
Chombo Class LevelFluxRegisterEdge

Dan Martin (code mods) and Gustav Meglicki (weave)

November 29, 2006

Reflux.w,v 1.61 2006/11/29 16:46:39 gustav Exp

Contents

1 Copyright and Authors 2

2 Introduction 3

3 The Balsara Curl-Refluxing Procedure 5

4 Application of the Curl-Refluxing Correction 16

5 Managing the Registers 22

5.1 Wiping the Registers Clean . 23
5.2 Incrementing the Coarse Register . 24

5.2.1 The Saga of the Signs . 26
5.3 Incrementing the Fine Register . 28

5.3.1 The Saga of the Signs, Again . 31

6 Auxiliary Functions 33

7 Debugging Utilities 34

8 The Class Constructor 35

8.1 Define . 36
8.2 Wrappers . 45

9 Putting it all together 46

10 The Header File 47

11 Closing Comments 49

Bibliography 50

Index and List of Refinements 51

1

1 Copyright and Authors

This software is copyright c© by the Lawrence Berkeley National Laboratory. Permission is granted to
reproduce this software for non-commercial purposes provided that this notice is left intact.

It is acknowledged that the U.S. Government has rights to this software under Contract DE-AC03-765F00098
between the U.S. Department of Energy and the University of California.

This software is provided as a professional and academic contribution for joint exchange. Thus it is
experimental, is provided “as is”, with no warranties of any kind whatsoever, no support, no promise of
updates, or printed documentation. By using this software, you acknowledge that the Lawrence Berkeley
National Laboratory and Regents of the University of California shall have no liability with respect to the
infringement of other copyrights by any part of this software.

Class LevelFluxRegisterEdge discussed herein is based on Chombo’s LevelFluxRegister, code
modifications by Dan Martin, LBNL, January 2000.

This weave is by Gustav Meglicki, Indiana University, for the Argonne National Laboratory. It was prepared
with cweb-3.64 by Silvio Levy and Donald E. Knuth, and LATEX classes rcs-2.10 by Joachim Schrod and
Jeffrey Goldberg and cweb-3.6 by Joachim Schrod.

2

2 Introduction

This code implements a curl-refluxing correction on the boundary between fine and coarse levels.
Refluxing is a correction that is carried out at the very boundary, not around it, not inside it, but right on

the faces of cells that are shared between the fine and coarse grids. So, the first place where this code differs
markedly from the prolongation code discussed in the other document is in marking the boundary precisely,
meaning that it is the actual faces we’re going to mark. This will be done by selecting boundary boxes first and
then also selecting the sides of the boxes that make the boundary. Two Chombo classes, Side and
SideIterator, will be used in this game.

Fluid dynamic fluxes live on faces. In this they’re quite like electromagnetic fields, which live on faces too.
The meaning of Maxwell equations

c2
∇×B = ∂tE (1)

∇×E = −∂tB (2)

in their integral form—this also is how we treat Maxwell equations in computations—is that both E and B

fields are associated with fluxes through the sides of the cell:

c2

∮

∂ side

B · dl =
d

dt

∫

side

E · n ds (3)

∮

∂ side

E · dl = −
d

dt

∫

side

B · n ds, (4)

where n ds is the surface differential pointing perpendicularly to the surface, and dl is the edge differential
pointing in the direction of the edge. ∂ side means “the edge of the side”. Using this notation we can also write
that sides = ∂ volume, which means that the sides are the edge of the volume—then side ∈ ∂ volume.

But let us get back to fluid dynamics for a moment. When computations are carried out on two grids with
different grid constants and different time steps, we may find that right on the boundary the coarse flux
through the surface is different from the fine flux through the same surface. This difference in fluxes may result
in a sharp field value step at the fine/coarse level boundary, that may later become source of noise and
instability. The way to solve this problem is to replace the flux on the coarse side with the flux taken from the
fine side or with a combination of the coarse and fine fluxes. This procedure is called refluxing. In
computational electrodynamics refluxing is a little trickier. Here we have to add a special correction to the curl
operator, so as to ensure that the field on the coarse side will remain divergence-free. This operation can be
called curl-refluxing.

Standard Chombo implements fluid dynamics flux corrector as the LevelFluxRegister class. It is used as
follows. The LevelFluxRegister ::define method creates two flux registers that are protected members of the
class. One corresponds to the flux on the coarse side, the other one to the flux on the fine side. They are both
fields of class LevelData〈FArrayBox〉 that cover the whole computational domain of their respective grids,
even though only the boxes that correspond to the fine/coarse boundary are used. The method finds about the
location of the boundary and boundary faces as well and stores this information on a protected variable
m coarseLocations that is a LayoutData〈Vector〈Box〉〉, where vector components correspond to the flux
directions in a way that is reminiscent of FluxBox.

Two class methods LevelFluxRegister :: incrementCoarse and LevelFluxRegister :: incrementFine are
used to fill all boxes of both registers with flux correction data. This is done box by box, which is why the
methods take a box of flux corrections that the calling program has to calculate somehow, as their argument,
not the whole LevelData. Normally we would scan over all boxes of a given level in a loop, calculate updates,
fluxes and flux corrections for each of them and then, while still holding on to a box, we’d increment the
corresponding register with the latter.

Once the registers have been filled, the refluxing is carried out by taking a combination of the original flux on
the coarse side, the data accumulated in the coarse register and the data accumulated in the fine register and
adding them up with some weights. This is done only in locations pointed to by m coarseLocations .

The LevelFluxRegisterEdge works similarly, but is more elaborate in finding directions of faces on both
the low and high sides of the fine/coarse grid boundary, because it deals with face and edge centered vector
fields, not with cell centered scalars. It uses a more elaborate data structure called

3

refluxLocations [SpaceDim ∗ 2] of class LayoutData〈Vector〈Vector〈IntVectSet〉〉〉, and a special map called
coarToCoarMap [SpaceDim ∗ 2] of class LayoutData〈Vector〈DataIndex〉〉 to characterize the boundary.

The curl-refluxing procedure uses averaged fine-side contour fields that have been accumulated in the
registers. These are then used to correct the curl that yields the B (or E) flux change on the coarse side.

To better explain what needs to be done here, we have to look more closely at what happens on the
fine/coarse boundary in FDTD.

4

3 The Balsara Curl-Refluxing Procedure

-

-

-

-

bx

bx

bx

bx

6

6

6

6

6

6

ez

ez

ez

ez

ez

ez

�

�

�

�

�

�

ey

ey

ey

ey

ey

ey

- -Bx Bx

6

6

6

6

Ez

Ez

Ez

Ez

�

�

�

�

Ey

Ey

Ey

Ey

-

-

-

-

Ex

Ex

Ex

Ex

6

6

Bz

Bz

(I, J, K)(i, j, k)

Figure 1: The interface between adjacent fine and coarse grids. The panel on the left shows a boundary fragment
as seen from the fine grid side. The left side of the coarse grid cell number (I, J, K) shown on the right represents
the same boundary fragment as seen from the coarse grid side.

Figure 1 shows the fine/coarse border wall as seen from both sides, from the fine side on the left and from
the coarse side on the right. We assume here the refinement ratio of 2. Following Balsara [1], we will use capital
letter symbols for all quantities on the right hand side, and small letter symbols for all quantities on the left
hand side.

The coarse side view shows the whole coarse side cell that abuts the fine/coarse boundary. The left side of
this cell is the boundary itself. If this cell is numbered by the triad (I, J, K), then the Bx arrow that punctures
the left side of the cell is Bx(I, J, K) as are the two E fields, Ez and Ey attached at the bottom of the side and
at the edge that is closer to us. These are Ey(I, J, K) and Ez(I, J, K). The other Ey and Ez defined on this
side correspond to the adjacent coarse grid cells, namely Ey(I, J, K + 1) and Ez(I, J + 1, K).

The other arrows attached to the other edges and sides of the cell are Bx(I + 1, J, K), Bz(I, J, K),
Bz(I, J, K + 1), Ex(I, J, K), Ex(I, J + 1, K), Ex(I, J + 1, K + 1), Ex(I, J, K + 1), Ez(I + 1, J, K),
Ez(I + 1, J + 1, K), Ey(I + 1, J, K), and Ey(I + 1, J, K + 1). We have not drawn By(I, J, K) and
By(I, J + 1, K) to avoid cluttering the figure, but they’re there.

We should also remember that the B and E fields are shifted in time with respect to each other. If B is
defined at time T and we’re ready to advance it to B(T + ∆T), then E is defined at time T + ∆T/2.

To sum up, the symbols on the coarse grid side of the fine/coarse boundary are:

Bx(I, J, K, T)

Ey(I, J, K, T + ∆T/2)

Ez(I, J, K, T + ∆T/2)

Ey(I, J, K + 1, T + ∆T/2)

Ez(I, J + 1, K, T + ∆T/2)

The advance of Bx(I, J, K, T)→ Bx(I, J, K, T + ∆T) can now be read from equation (4). We have to look in
the direction of Bx from the fine grid side and walk along the contour clockwise, from the bottom edge, for
example, evaluating the left hand side of the equation at the same time. This results in

Ey(I, J, K, T + ∆T/2)∆Y + Ez(I, J + 1, K, T + ∆T/2)∆Z

−Ey(I, J, K + 1, T + ∆T/2)∆Y − Ez(I, J, K, T + ∆T/2)∆Z (5)

5

On the right hand side we have the change of flux of Bx through the surface, which is

Bx(I, J, K, T + ∆T)−Bx(I, J, K, T)

∆T
∆Y ∆Z (6)

multiplied by −1. Equation (4) tells us that these should be equal:

Ey(I, J, K, T + ∆T/2)∆Y + Ez(I, J + 1, K, T + ∆T/2)∆Z

−Ey(I, J, K + 1, T + ∆T/2)∆Y − Ez(I, J, K, T + ∆T/2)∆Z

= −
Bx(I, J, K, T + ∆T)−Bx(I, J, K, T)

∆T
∆Y ∆Z (7)

Dividing by ∆Y ∆Z and rearranging terms on the left hand side yields

Ez(I, J + 1, K, T + ∆T/2)− Ez(I, J, K, T + ∆T/2)

∆Y

−
Ey(I, J, K + 1, T + ∆T/2)− Ey(I, J, K, T + ∆T/2)

∆Z

= −
Bx(I, J, K, T + ∆T)−Bx(I, J, K, T)

∆T
, (8)

which is a numerical approximation for

(∇×E)x = ∂yEz − ∂zEy = −∂tBx (9)

This is how Stoke’s theorem is explained to little children in country schools. The reason we do it here is to
establish the notation, confirm that we get the signs and the directions right, and to prepare ground for
stitching solutions on both sides of the fine/coarse border.

The time advance of Bx that follows from the above is

Bx(I, J, K, T + ∆T) = Bx(I, J, K, T)

−

(

Ez(I, J + 1, K, T + ∆T/2)− Ez(I, J, K, T + ∆T/2)

∆Y

−
Ey(I, J, K + 1, T + ∆T/2)− Ey(I, J, K, T + ∆T/2)

∆Z

)

∆T. (10)

This advance, when performed for Bx(I, J, K, T), and similarly for By(I, J, K, T) and Bz(I, J, K, T) (see
equations (18) and (19) below) at all (I, J, K) guarantees that the flux of B through all surfaces of cell (I, J, K)
will remain zero at T + ∆T , or, in other words, that there will be no divergence of B(I, J, K, T + ∆T) if the
same holds for B(I, J, K, T).

In numerical terms this evaluates to

Bx(I + 1, J, K, T + ∆T)−Bx(I, J, K, T + ∆T)

∆X

+
By(I, J + 1, K, T + ∆T)−By(I, J, K, T + ∆T)

∆Y

+
Bz(I, J, K + 1, T + ∆T)−Bz(I, J, K, T + ∆T)

∆Z
= 0, (11)

for every (I, J, K) if the same holds for B(I, J, K, T) for every (I, J, K).
Now let us have a look at the fine grid side of the border. Here we see four sides of four cells and these are all

left sides of the fine grid cells, the same it was with the coarse cell. These four fine grid cells live inside the
coarse grid cell we have just looked at, in its left half. The fine grid cell that is on the bottom and closest to us
is numbered by (i, j, k), where i = 2I, j = 2J and k = 2K. The four bx arrows correspond to bx(i, j, k),
bx(i, j + 1, k), bx(i, j + 1, k + 1) and bx(i, j, k + 1).

6

The divergence-free data restriction procedure, which is carried out at every point in time whenever b and B

are synchronized, replaces the flux of Bx through surface (∆Y, ∆Z) with the sum of the four fluxes of bx

through their matching surfaces, i.e.,

Bx(I, J, K, T)∆Y ∆Z

← bx(i, j, k, T)∆y∆z + bx(i, j + 1, k, T)∆y∆z + bx(i, j + 1, k + 1, T)∆y∆z + bx(i, j, k + 1, T)∆y∆z

= (bx(i, j, k, T) + bx(i, j + 1, k, T) + bx(i, j + 1, k + 1, T) + bx(i, j, k + 1, T))
∆Y

2

∆Z

2
, (12)

which, on dividing both sides by ∆Y ∆Z reduces to replacing Bx(I, J, K, T) with an arithmetic mean of the bx

fields defined on the fine grid sides the coarse cell side overlaps with:

Bx(I, J, K, T)←
1

4
(bx(i, j, k, T) + bx(i, j + 1, k, T) + bx(i, j + 1, k + 1, T) + bx(i, j, k + 1, T)) , (13)

and similarly for T + ∆T .
This restriction procedure guarantees that if the b field is divergence free everywhere on the fine grid, then B

so produced will similarly be divergence free where it overlaps with b, with the notable exception of the
fine/coarse boundary, where we find that

Bx(I + 1, J, K, T + ∆T)− 1

4

(

bx(i, j, k, T + ∆T) + bx(i, j + 1, k, T + ∆T)
+bx(i, j + 1, k + 1, T + ∆T) + bx(i, j, k + 1, T + ∆T)

)

∆X

+
By(I, J + 1, K, T + ∆T)−By(I, J, K, T + ∆T)

∆Y

+
Bz(I, J, K + 1, T + ∆T)−Bz(I, J, K, T + ∆T)

∆Z
6= 0, (14)

because the arithmetic mean of the bx fields is not going to be equal to Bx that it replaces, and so the balance
breaks.

Yet, the broken balance can be restored by adding corrections to By(I, J, K, T + ∆T),
By(I, J + 1, K, T + ∆T), Bz(I, J, K, T + ∆T) and Bz(I, J, K + 1, T + ∆T). The corrections work by cancelling
the change

Bx(I, J, K, T + ∆T)−
1

4

(

bx(i, j, k, T + ∆T) + bx(i, j + 1, k, T + ∆T)
+bx(i, j + 1, k + 1, T + ∆T) + bx(i, j, k + 1, T + ∆T)

)

(15)

introduced into the divergence equation by the restriction procedure on the fine/coarse boundary face.
To figure out what the corrections should be, we should first evaluate the change, and then we’ll have to

decide how to assign its counterbalance to By and Bz respectively.
The physical meaning of the corrections is as follows. The restriction procedure that replaces

Bx(I, J, K, T + ∆T) is equivalent to using more accurate data, namely, the fine grid electric fields, (ex, ey, ez),
to evaluate Bx. But the contours that advance By and Bz touch the fine/coarse boundary too, even if with one
edge only. It turns out that if we replace the Ey and Ez fields on these shared edges with their fine grid versions
ey and ez, in formulas used to advance By and Bz , we’ll restore the balance to the divergence equation (11).

And this is the Balsara curl-refluxing procedure.
Before we go any further, it is clear that we will have to be extremely sensitive to directions and to the exact

placement of the fine/coarse boundary and fields attached to it, when implementing the procedure in the code.
This is why the class LevelFluxRegisterEdge is rather difficult to write, understand and to modify, if need
be.

Now, let us go back to the formulas. We’ll write down the updates for By(I, J, K, T) and Bz(I, J, K, T)
quickly using equation (2):

∂tBy = − (∇×E)y = − (∂zEx − ∂xEz) (16)

∂tBz = − (∇×E)z = − (∂xEy − ∂yEx) , (17)

7

which discretize to

By(I, J, K, T + ∆T) = By(I, J, K, T)

−

(

Ex(I, J, K + 1, T + ∆T/2)− Ex(I, J, K, T + ∆T/2)

∆Z

−
Ez(I + 1, J, K, T + ∆T/2)− Ez(I, J, K, T + ∆T/2)

∆X

)

∆T, (18)

where Ez(I, J, K, T + ∆T/2) lives on the fine/coarse boundary, and

Bz(I, J, K, T + ∆T) = Bz(I, J, K, T)

−

(

Ey(I + 1, J, K, T + ∆T/2)− Ey(I, J, K, T + ∆T/2)

∆X

−
Ex(I, J + 1, K, T + ∆T/2)− Ex(I, J, K, T + ∆T/2

∆Y

)

∆T, (19)

where Ey(I, J, K, T + ∆T/2) lives on the fine/coarse boundary. Equations (10), (18) and (19) together advance
the B field within the coarse grid.

The fields Ez(I, J, K, T + ∆T/2) in equation (18) and Ey(I, J, K, T + ∆T/2) in equation (19) will have to be
additionally tweaked by the curl-refluxing correction.

Now, let us have a look at how the b fields are advanced between T and T + ∆T . We can simply use
equations (10), (18) and (19) here and just replace capital letters with low case letters. But there is one more
difference: the time step is different. For the space refinement ratio of 2, the time refinement ratio has to be 3
to make FDTD work at all levels and to maintain the synchrony between the E and e fields and the B and b

fields [2]. And so we have that ∆t = ∆T/3. Also, to advance the b fields from T to T + ∆T we will have to
perform three time steps.

So, here they are for bx:

bx(i, j, k, T + ∆T/3) = bx(i, j, k, T)

−

(

ez(i, j + 1, k, T + ∆T/6)− ez(i, j, k, T + ∆T/6)

∆y

−
ey(i, j, k + 1, T + ∆T/6)− ey(i, j, k, T + ∆T/6)

∆z

)

∆T/3 (20)

bx(i, j, k, T + 2∆T/3) = bx(i, j, k, T + ∆T/3)

−

(

ez(i, j + 1, k, T + ∆T/2)− ez(i, j, k, T + ∆T/2)

∆y

−
ey(i, j, k + 1, T + ∆T/2)− ey(i, j, k, T + ∆T/2)

∆z

)

∆T/3 (21)

bx(i, j, k, T + ∆T) = bx(i, j, k, T + 2∆T/3)

−

(

ez(i, j + 1, k, T + 5∆T/6)− ez(i, j, k, T + 5∆T/6)

∆y

−
ey(i, j, k + 1, T + 5∆T/6)− ey(i, j, k, T + 5∆T/6)

∆z

)

∆T/3 (22)

We can express bx(i, j, k, T + ∆T) directly in terms of bx(i, j, k, T) and the three intervening curls as follows

bx(i, j, k, T + ∆T) = bx(i, j, k, T)

8

−

(

ez(i, j + 1, k, T + ∆T/6)− ez(i, j, k, T + ∆T/6)

∆y

−
ey(i, j, k + 1, T + ∆T/6)− ey(i, j, k, T + ∆T/6)

∆z

)

∆T/3

−

(

ez(i, j + 1, k, T + ∆T/2)− ez(i, j, k, T + ∆T/2)

∆y

−
ey(i, j, k + 1, T + ∆T/2)− ey(i, j, k, T + ∆T/2)

∆z

)

∆T/3

−

(

ez(i, j + 1, k, T + 5∆T/6)− ez(i, j, k, T + 5∆T/6)

∆y

−
ey(i, j, k + 1, T + 5∆T/6)− ey(i, j, k, T + 5∆T/6)

∆z

)

∆T/3 (23)

Now we are going to do the same for bx(i, j + 1, k, T), bx(i, j + 1, k + 1, T), and bx(i, j, k + 1, T):

bx(i, j + 1, k, T + ∆T) = bx(i, j + 1, k, T)

−

(

ez(i, j + 2, k, T + ∆T/6)− ez(i, j + 1, k, T + ∆T/6)

∆y

−
ey(i, j + 1, k + 1, T + ∆T/6)− ey(i, j + 1, k, T + ∆T/6)

∆z

)

∆T/3

−

(

ez(i, j + 2, k, T + ∆T/2)− ez(i, j + 1, k, T + ∆T/2)

∆y

−
ey(i, j + 1, k + 1, T + ∆T/2)− ey(i, j + 1, k, T + ∆T/2)

∆z

)

∆T/3

−

(

ez(i, j + 2, k, T + 5∆T/6)− ez(i, j + 1, k, T + 5∆T/6)

∆y

−
ey(i, j + 1, k + 1, T + 5∆T/6)− ey(i, j + 1, k, T + 5∆T/6)

∆z

)

∆T/3, (24)

bx(i, j + 1, k + 1, T + ∆T) = bx(i, j + 1, k + 1, T)

−

(

ez(i, j + 2, k + 1, T + ∆T/6)− ez(i, j + 1, k + 1, T + ∆T/6)

∆y

−
ey(i, j + 1, k + 2, T + ∆T/6)− ey(i, j + 1, k + 1, T + ∆T/6)

∆z

)

∆T/3

−

(

ez(i, j + 2, k + 1, T + ∆T/2)− ez(i, j + 1, k + 1, T + ∆T/2)

∆y

−
ey(i, j + 1, k + 2, T + ∆T/2)− ey(i, j + 1, k + 1, T + ∆T/2)

∆z

)

∆T/3

−

(

ez(i, j + 2, k + 1, T + 5∆T/6)− ez(i, j + 1, k + 1, T + 5∆T/6)

∆y

−
ey(i, j + 1, k + 2, T + 5∆T/6)− ey(i, j + 1, k + 1, T + 5∆T/6)

∆z

)

∆T/3, (25)

9

and

bx(i, j, k + 1, T + ∆T) = bx(i, j, k + 1, T)

−

(

ez(i, j + 1, k + 1, T + ∆T/6)− ez(i, j, k + 1, T + ∆T/6)

∆y

−
ey(i, j, k + 2, T + ∆T/6)− ey(i, j, k + 1, T + ∆T/6)

∆z

)

∆T/3

−

(

ez(i, j + 1, k + 1, T + ∆T/2)− ez(i, j, k + 1, T + ∆T/2)

∆y

−
ey(i, j, k + 2, T + ∆T/2)− ey(i, j, k + 1, T + ∆T/2)

∆z

)

∆T/3

−

(

ez(i, j + 1, k + 1, T + 5∆T/6)− ez(i, j, k + 1, T + 5∆T/6)

∆y

−
ey(i, j, k + 2, T + 5∆T/6)− ey(i, j, k + 1, T + 5∆T/6)

∆z

)

∆T/3. (26)

And now we add equations (23), (24), (25) and (26). This will result in numerous cancellations—as it should,
because we are really heading towards a discretized form of the contour integral for the flux change ∆Bx∆Y ∆Z
but expressed in terms of the e fields rather than the E fields.

The cancellations of various e terms must all occur within the same time slice. We have 3 time slices here:
T + ∆T/6, T + ∆T/2 and T + 5∆T/6, and for everyone of them, the cancellations will occur in the same way.
It is therefore enough to trace the cancellations within just one slice.

Let us take the first one. Looking at the ez fields we see immediately that four of the ez terms cancel out.
They’re the ones that correspond to the middle of the ∆Y ∆Z plaquette, namely, ez(i, j + 1, k) and
ez(i, j + 1, k + 1). What is left is the ez part of the contour integral around the ∆Y ∆Z plaquette:

−
(

+ ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)

−ez(i, j, k, T + ∆T/6)− ez(i, j, k + 1, T + ∆T/6)
) ∆T

3∆y
(27)

Similarly for ey, we get the cancellation of the ey(i, j, k + 1) and ey(i, j + 1, k + 1) terms, which leaves

−
(

− ey(i, j + 1, k + 2, T + ∆T/6)− ey(i, j, k + 2, T + ∆T/6)

+ey(i, j, k, T + ∆T/6) + ey(i, j + 1, k, T + ∆T/6)
) ∆T

3∆z
(28)

In summary we get the following for the T + ∆T/6 slice:

−

(

ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)− ez(i, j, k, T + ∆T/6)− ez(i, j, k + 1, T + ∆T/6)

∆y

−
ey(i, j + 1, k + 2, T + ∆T/6) + ey(i, j, k + 2, T + ∆T/6)− ey(i, j, k, T + ∆T/6)− ey(i, j + 1, k, T + ∆T/6)

∆z

)

∆T

3

Now we repeat this for the other two time slices, add it all up, divide by 4 and end up with the replacement for
Bx(I, J, K, T + ∆T) in terms of the e fields:

Bx(I, J, K, T + ∆T) = Bx(I, J, K, T)

−
1

2

(

ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)− ez(i, j, k, T + ∆T/6)− ez(i, j, k + 1, T + ∆T/6)

∆Y

10

−
ey(i, j + 1, k + 2, T + ∆T/6) + ey(i, j, k + 2, T + ∆T/6)− ey(i, j, k, T + ∆T/6)− ey(i, j + 1, k, T + ∆T/6)

∆Z

+
ez(i, j + 2, k, T + ∆T/2) + ez(i, j + 2, k + 1, T + ∆T/2)− ez(i, j, k, T + ∆T/2)− ez(i, j, k + 1, T + ∆T/2)

∆Y

−
ey(i, j + 1, k + 2, T + ∆T/2) + ey(i, j, k + 2, T + ∆T/2)− ey(i, j, k, T + ∆T/2)− ey(i, j + 1, k, T + ∆T/2)

∆Z

+
ez(i, j + 2, k, T + 5∆T/6) + ez(i, j + 2, k + 1, T + 5∆T/6)− ez(i, j, k, T + 5∆T/6)− ez(i, j, k + 1, T + 5∆T/6)

∆Y

−
ey(i, j + 1, k + 2, T + 5∆T/6) + ey(i, j, k + 2, T + 5∆T/6)− ey(i, j, k, T + 5∆T/6)− ey(i, j + 1, k, T + 5∆T/6)

∆Z
)

∆T

3
, (29)

where we have absorbed 1/2 into ∆Y = 2∆y and ∆Z = 2∆z. The other 1/2 that is in front of the large bracket
can be absorbed also on recognizing that

ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)

2
(30)

is simply the average of ez on the far edge of the ∆Y ∆Z plaquette, and similarly for the other terms.
Here we simplify our notation somewhat. The notation used so far has been explicit and precise, but

extremely verbose, and this makes it hard to notice certain things. So we introduce the following symbol

〈ez(i, j + 2, k̄)〉|T+∆T/6 =
ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)

2
, (31)

where a bar above k indicates averaging over k and k + 1, or, in case the refinement ratio n is other than 2, over
k, k + 1, . . . , k + n− 1. This new notation lets us rewrite the rather bulky equation (29) in a way that shows
better what’s what:

Bx(I, J, K, T + ∆T) = Bx(I, J, K, T)

−

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+∆T/6

∆T

3

−

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+∆T/2

∆T

3

−

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+5∆T/6

∆T

3
(32)

This is quite easy to understand. Let us observe that j and j + 2 correspond geographically to J and J + 1 and
k and k + 2 correspond geographically to K and K + 1. A comparison with equation (10) tells us that here we
take an arithmetic average of three curls in place of just one curl, and each of these is expressed in terms of
arithmetic averages of the fine grid e fields over the relevant edge.

The difference between equations (32) and (10) is what we should redistribute between ∆By and ∆Bz in
order to restore the broken divergence balance in the coarse grid cell that abuts the boundary.

Let us now turn back to equations (18) and (19). As we have pointed out, Ez(I, J, K, T + ∆T/2) and
Ey(I, J, K, T + ∆T/2) live on the fine/coarse boundary. So why not replace them with time and edge averages
constructed from the e fields, the same way we did with Bx in equation (32)? The resulting correction would be

By(I, J, K, T + ∆T)←

By(I, J, K, T + ∆T) +
Ez(I, J, K, T + ∆T/2)

∆X
∆T

−
〈ez(i, j, k̄)〉|T+∆T/6

∆X

∆T

3
−
〈ez(i, j, k̄)〉|T+∆T/2

∆X

∆T

3
−
〈ez(i, j, k̄)〉|T+5∆T/6

∆X

∆T

3
, (33)

11

where we have first subtracted −Ez(I, J, K, T + ∆T/2)∆T/∆X , and then replaced it with the three e terms.
This can be nicely gathered into

By(I, J, K, T + ∆T)← By(I, J, K, T + ∆T)

−

(

〈ez(i, j, k̄)〉|T+∆T/6 + 〈ez(i, j, k̄)〉|T+∆T/2 + 〈ez(i, j, k̄)〉|T+5∆T/6

3

−Ez(I, J, K, T + ∆T/2)

)

∆T

∆X
. (34)

And this is the celebrated Balsara curl-refluxing correction for By.
A similar correction for Bz(I, J, K, T + ∆T) is

Bz(I, J, K, T + ∆T)← Bz(I, J, K, T + ∆T)

+

(

〈ey(i, j̄, k)〉|T+∆T/6 + 〈ey(i, j̄, k)〉|T+∆T/2 + 〈ey(i, j̄, k)〉|T+5∆T/6

3

−Ey(I, J, K, T + ∆T/2)

)

∆T

∆X
. (35)

Now we have to check if equations (32), (34) and (35) together save the day, i.e., if they restore the equality
that has been broken by equation (14).

We assume that equation (11) is satisfied at T and at T + ∆T , the latter if no restriction and refluxing
corrections have been carried out yet. All B fields in this expression are affected by the restriction and the
refluxing procedures with the exception of Bx(I + 1, J, K, T + ∆T). Equations (32), (34) and (35) address the
changes to three of the fields, so we still have to write down refluxing changes made to By(I, J + 1, K, T + ∆T)
and Bz(I, J, K + 1, T + ∆T). These are

By(I, J + 1, K, T + ∆T)← By(I, J + 1, K, T + ∆T)

−

(

〈ez(i, j + 2, k̄)〉|T+∆T/6 + 〈ez(i, j + 2, k̄)〉|T+∆T/2 + 〈ez(i, j + 2, k̄)〉|T+5∆T/6

3

−Ez(I, J + 1, K, T + ∆T/2)

)

∆T

∆X
(36)

and

Bz(I, J, K + 1, T + ∆T)← Bz(I, J, K + 1, T + ∆T)

+

(

〈ey(i, j̄, k + 2)〉|T+∆T/6 + 〈ey(i, j̄, k + 2)〉|T+∆T/2 + 〈ey(i, j̄, k + 2)〉|T+5∆T/6

3

−Ey(I, J, K + 1, T + ∆T/2)

)

∆T

∆X
. (37)

So, now we have to fold equations (32), (34), (35), (36) and (37) together into (11) and see what happens.
This is not as tedious as it seems, because of the marvellous invention of the copy-and-paste technology. . . We
obtain the following.

1

∆X

(

Bx(I + 1, J, K, T + ∆T)−Bx(I, J, K, T)

+

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+∆T/6

∆T

3

12

+

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+∆T/2

∆T

3

+

(

〈ez(i, j + 2, k̄)〉 − 〈ez(i, j, k̄)〉

∆Y
−
〈ey(i, j̄, k + 2)〉 − 〈ey(i, j̄, k)〉

∆Z

)

∣

∣

∣

∣

∣

T+5∆T/6

∆T

3

)

+
1

∆Y

(

By(I, J + 1, K, T + ∆T)

−

(

〈ez(i, j + 2, k̄)〉|T+∆T/6 + 〈ez(i, j + 2, k̄)〉|T+∆T/2 + 〈ez(i, j + 2, k̄)〉|T+5∆T/6

3

−Ez(I, J + 1, K, T + ∆T/2)

)

∆T

∆X

−By(I, J, K, T + ∆T)

+

(

〈ez(i, j, k̄)〉|T+∆T/6 + 〈ez(i, j, k̄)〉|T+∆T/2 + 〈ez(i, j, k̄)〉|T+5∆T/6

3

−Ez(I, J, K, T + ∆T/2)

)

∆T

∆X

)

+
1

∆Z

(

Bz(I, J, K + 1, T + ∆T)

+

(

〈ey(i, j̄, k + 2)〉|T+∆T/6 + 〈ey(i, j̄, k + 2)〉|T+∆T/2 + 〈ey(i, j̄, k + 2)〉|T+5∆T/6

3

−Ey(I, J, K + 1, T + ∆T/2)

)

∆T

∆X

−Bz(I, J, K, T + ∆T)

−

(

〈ey(i, j̄, k)〉|T+∆T/6 + 〈ey(i, j̄, k)〉|T+∆T/2 + 〈ey(i, j̄, k)〉|T+5∆T/6

3

−Ey(I, J, K, T + ∆T/2)

)

∆T

∆X

)

. (38)

The first thing we notice is that all terms involving the e fields cancel out! What is left is

1

∆X

(

Bx(I + 1, J, K, T + ∆T)−
(

Bx(I, J, K, T)

−∆T
(Ez(I, J + 1, K, T + ∆T

2
)− Ez(I, J, K, T + ∆T

2
)

∆Y
−

Ey(I, J, K + 1, T + ∆T
2

)− Ey(I, J, K, T + ∆T
2

)

∆Z

))

)

+
1

∆Y
(By(I, J + 1, K, T + ∆T)−By(I, J, K, T + ∆T))

+
1

∆Z
(Bz(I, J, K + 1, T + ∆T)−Bz(I, J, K, T + ∆T)) (39)

A comparison with equation (10) shows us that the top two lines of equation (39) are simply

1

∆X
(Bx(I + 1, J, K, T + ∆T)−Bx(I, J, K, T + ∆T)) (40)

and so we find that equation (39) is the same as the left hand side of equation (11).
Quod erat demonstrandum.

13

An important lesson that follows from the above is that the restriction procedure given by equation (13)
must be followed by the curl-refluxing corrections on the fine/coarse boundary given by equations (34) and
(35), otherwise non-zero divergence of B will be introduced on the coarse side of the boundary. Through the
prolongation procedure then the non-zero divergence will be re-introduced back into the fine level, thus
generating instability.

In a system such as FDTD, where both the E and B fields must remain divergence free, curl-refluxing of E

must be carried out as well, every time coarse level E is corrected by the data restriction from the fine level e.
The sign of the correction will have to be meticulously checked, because it is not going to be the same as for the
B field.

An implementation of corrections (34) and (35) must remember the state of the fine level electric fields on
the boundary at three previous time steps, namely at T + ∆T/6, T + ∆T/2 and T + 5∆T/6. This is what the
reflux registers are for. The incrementFine and incrementCoarse methods accumulate corrections generated at
the intermediate fine time steps in the registers. The accumulated values are then used by refluxCurl to add
the corrections to By and Bz when the fine and the coarse levels are synchronized.

Before we get down to talking about the implementation of the curl-refluxing procedure, let us address the
issue of signs first.

-

-

-

-

bx

bx

bx

bx

6

6

6

6

6

6

ez

ez

ez

ez

ez

ez

�

�

�

�

�

�

ey

ey

ey

ey

ey

ey

- -Bx Bx

6

6

6

6

Ez

Ez

Ez

Ez

�

�

�

�

Ey

Ey

Ey

Ey

-

-

-

-

Ex

Ex

Ex

Ex

6

6

Bz

Bz

(I − 1, J, K) (i, j, k)

Figure 2: The interface between adjacent fine and coarse grids on the low side of the fine grid. The panel on the
left shows the (I − 1, J, K) coarse grid cell that abuts the boundary with its high wall. The panel on the right
shows the same fragment of the boundary, but seen from the fine grid side.

Figure 2 is much the same as Figure 1, but with the coarse and fine grids switched around. The coarse cell
shown in the figure is (I − 1, J, K), not (I, J, K) as was the case in figure 1. The (I, J, K) cell in this case does
not need any corrections. It is the (I − 1, J, K) cell where we need to reflux. Because this time the restricted Bx

is on the high side of the cell, the signs change.
The By and Bz update equations on this side of the fine grid are

By(I − 1, J, K, T + ∆T) = By(I − 1, J, K, T)

−

(

Ex(I − 1, J, K + 1, T + ∆T/2)− Ex(I − 1, J, K, T + ∆T/2)

∆Z

−
Ez(I, J, K, T + ∆T/2)− Ez(I − 1, J, K, T + ∆T/2)

∆X

)

∆T, (41)

where Ez(I, J, K, T + ∆T/2) lives on the boundary face, and

Bz(I − 1, J, K, T + ∆T) = Bz(I − 1, J, K, T)

14

−

(

Ey(I, J, K, T + ∆T/2)− Ey(I − 1, J, K, T + ∆T/2)

∆X

−
Ex(I − 1, J + 1, K, T + ∆T/2)− Ex(I − 1, J, K, T + ∆T/2

∆Y

)

∆T, (42)

where Ey(I, J, K, T + ∆T/2) lives on the boundary face.
Therefore the curl-refluxing equations for By(I − 1, J, K, T + ∆T) and for Bz(I − 1, J, K, T + ∆T) on the low

side are:

By(I − 1, J, K, T + ∆T)← By(I − 1, J, K, T + ∆T)

+

(

〈ez(i, j + 2, k̄)〉|T+∆T/6 + 〈ez(i, j + 2, k̄)〉|T+∆T/2 + 〈ez(i, j + 2, k̄)〉|T+5∆T/6

3

−Ez(I, J, K, T + ∆T/2)

)

∆T

∆X
(43)

and

Bz(I − 1, J, K, T + ∆T)← Bz(I − 1, J, K, T + ∆T)

−

(

〈ey(i, j̄, k + 2)〉|T+∆T/6 + 〈ey(i, j̄, k + 2)〉|T+∆T/2 + 〈ey(i, j̄, k + 2)〉|T+5∆T/6

3

−Ey(I, J, K, T + ∆T/2)

)

∆T

∆X
. (44)

Comparing equations (34) and (43) and then (35) and (44) we find that the sign of the correction on the low
side is reversed.

15

4 Application of the Curl-Refluxing Correction

Instead of explaining the code in its code order, here we’ll explain it back to front, focusing on the important
routines first, while we’re hot at it, and then only getting down to the tedium of various declarations.

The first method we’re going to look at is LevelFluxRegisterEdge ::refluxCurl , which implements
equations (34) and (35). This will give us a better understanding of what various structures are for, before we
get to build them with LevelFluxRegisterEdge ::define .

When refluxCurl is called, we should already have terms such as

(

〈ez(i, j, k̄)〉|T+∆T/6 + 〈ez(i, j, k̄)〉|T+∆T/2 + 〈ez(i, j, k̄)〉|T+5∆T/6

)

/3 (45)

accumulated in the By slots of the fine register fabFine , and terms such as

−Ez(I, J, K, T + ∆T/2) (46)

stored in the By slots of the coarse register fabCoarse . Similarly for Bz and Bx for all outward looking faces of
the fine/coarse border. Bx too, because some faces will face in the z and in the y directions, in which case it
will be the Bx field that will have to be curl-refluxed, together with the other field in the plane of the face.

The method takes two arguments. The first one is a coarse field a uCoarse . This can be, for example, B,
with Bx, By, and Bz attached to appropriate sides of FluxBoxes assembed into a LevelData. The second
argument is a scale . This is a number that will be used to multiply the sum of the registers.

We will encounter the following code expression within the innermost loop of the method:
U(iv (), comp) −= local scale ∗ (coar (iv (), comp) + fine (iv (), comp)). The local scale parameter will turn out
to be something like ∆T , and it will be made of a scale with its sign adjusted depending on the side of the face
and the component of the field to be corrected. coar (iv (), comp) will be the coarse register content,
fine (iv (), comp) will be the fine register content and U(iv (), comp) will be the field (Bx, By or Bz) being
corrected. The structure of this expression fits exactly equations (34) and (35).

So, now that we know what the parameters are, let us have a look at the general outline of the method.
We begin with two simple sanity checks—first, if the whole LevelFluxRegisterEdge class has been fully

defined, this is done by assert (isDefined ()), and, second, if the number of components in the input field
a uCoarse is the same as the number of components for which the object has been built. This number is stored
on m nComp .

Assuming it’s safe to proceed, we go into four loops that scan over

1. the face directions: 0 (x), 1 (y), and 2 (z);

2. sides: Lo and Hi—for every face direction;

3. all boxes of the a uCoarse BoxLayout—for every side of every face direction;

4. all field directions perpendicular to the direction of the face—for every box and for every side of every
face direction.

At the innermost level of these four loops we have all four parameters defined: the box, the direction of the
face, whether it is the low or the high face and the direction of the field to be corrected. This direction will be
always perpendicular to the direction of the face.

There are two chunks here that we have left undefined. The first one, prior to entering the loop over all
boxes, 〈Make a coarse copy of the fine register 5 〉, creates a copy of the fine register on the coarse register’s
grid. The second chunk, 〈Apply the correction 6 〉, checks if a given box has any locations that need to be
refluxed, and if it does, it refluxes them.

〈 refluxCurl 4 〉 ≡4

void LevelFluxRegisterEdge ::refluxCurl (LevelData〈FluxBox〉 &a uCoarse ,Real a scale)
{

assert (isDefined ());
assert (a uCoarse .nComp () ≡ m nComp);

SideIterator side ;

16

for (int idir = 0; idir < SpaceDim ; ++idir) {
for (side .begin (); side .ok (); ++side) {
〈Make a coarse copy of the fine register 5 〉
for (DataIterator it = a uCoarse .dataIterator (); it .ok (); ++it) {

for (int fluxComp = 0; fluxComp < SpaceDim ; fluxComp ++) {
if (fluxComp 6= idir) {
〈Apply the correction 6 〉
}
}
}
}
}
}

This code is used in chunk 39.

¶ The refluxing registers fabFine and fabCoarse are vectors of LevelData〈FluxBox〉es. Each has
SpaceDim ∗ 2 slots, two slots that correspond to both sides per space dimension. Function index (idir , side ())
retrieves the appropriate vector index given the face direction and the side, and this is then used to retrieve the
corresponding LevelData〈FluxBox〉 that contains accumulated register entries for this direction and this side.

Both the fine and the coarse registers are defined on their own special box layouts that trace the
boundaries of the coarsened fine level box layouts. Their boxes can be pointed to by the same
DataIterators and LayoutIterators as the fine level boxes. But DataIterators and LayoutIterators
that refer to the coarse level grid are different and a special translation must be used to switch from the
coarse level iterator to the register iterator.

The construction of the fine register box layout, and there is a different layout for each slot of the

register, is discussed in more detail in module 〈 Iterate over Directions and Sides 30 〉.

The coarse register box layout is then used to define a new local register, called fineRegLocal , that is then
filled with data from the fine register by the copyTo method.

The crseCopiers is a vector of Copiers that is indexed the same way as the registers. Its use here is only to
speed things up by providing precomputed information to the copyTo method. A Copier is defined by
specifying in advance the BoxLayouts between which a copy will take place and any other parameters that
help specify the copy operation, for example, whether the ghost cells should be filled by the operation and if so,
how many. In this case the Copiers of the crseCopiers vector are specified by
LevelFluxRegisterEdge ::define once the relevant BoxLayouts are known.

〈Make a coarse copy of the fine register 5 〉 ≡5

LevelData〈FluxBox〉 &fineReg = fabFine [index (idir , side ())];
LevelData〈FluxBox〉 &coarReg = fabCoarse [index (idir , side ())];
LevelData〈FluxBox〉 fineRegLocal (coarReg .getBoxes (),m nComp);

fineReg .copyTo (fineReg .interval (),fineRegLocal ,fineRegLocal .interval (), crseCopiers [index (idir , side ())]);

This code is cited in chunk 4.

This code is used in chunk 4.

¶ Now let us have a look at the second chunk, 〈Apply the correction 6 〉. Table 1 lists some variables that are
used within it, the first four of which would have been specified for this place within the loop.

We begin by extracting the field data for this box (it ()) and for the field component (fluxComp) that is
going to be refluxed in this iteration, from the input field a uCoarse . The field will be referred to as U . For
example, if idir points in the x direction, as is shown in Figure 1, then fluxComp will be y first and then z and
U will be By first and then Bz—all restricted to this particular box.

We also extract the box on which the field is defined and call it coarseGridBox .
Now, the thing to know about this procedure, and this is not quite covered by Chombo documentation, is

that if we were to extract a box from a uCoarse , we’d extract a cell-centered box on which the FluxBox has

17

Table 1: Some variables used by the chunk.
name meaning
idir face direction (0, 1 or 2)
side () face side (Lo or Hi)
it () box pointer
fluxComp direction of the field to be refluxed
a uCoarse the face-centered vector field, e.g., B

a scale correction multiplication factor, e.g., ∆T
SpaceDim number of space dimensions
index () index to the register vector
refluxLocations a vector of cells for which refluxing should be done
coarToCoarMap a map that converts a coarse level index to a coarse register index
coarReg the coarse register
fineRegLocal the fine register mapping onto the coarse register BoxLayout

nonUpdatedEdges a list of edges that haven’t been updated yet

been defined. But if instead we extract a specific field component from a uCoarse first, as we do here, and this
component is face-centered, and then only extract the box from the component, the box will come out
face-centered and grown already in the direction of the field by one row (or column, or layer) of cells.

Consider the following simple 2-dimensional example. Suppose we have a cell centered Box

b(IntVect ::Zero , 5 ∗ IntVect ::Unit). This box will show as

b: Box (0,0) to (5,5) type [(0,0)]

Now, let us build a FluxBox a on this box. There will be two fluxes associated with a (in two dimensions).
Let us call them Bx = a[0], and By = a[1]. We can now extract boxes from Bx and from By, as opposed to
extracting a box from just a with a.box (), which would merely return box b. The boxes that are extracted from
the fluxes show as follows:

a[0].box(): Box (0,0) to (6,5) type [(1,0)]

a[1].box(): Box (0,0) to (5,6) type [(0,1)]

We can make the box a[0].box () cell centered but without changing its shape by invoking the Box ::shiftHalf ()
method. For example:

Box c = a[0].box();

c.shiftHalf(0,1);

This will produce

c: Box (0,0) to (6,5) type [(0,0)]

The shiftHalf () operation, when performed in the +1 direction, affects only the Box type, stored in its own
separate slot, but not its coordinate representation.

So, coming back to the code, we perform this shiftHalf () on coarseGridBox and then extract all cells from it
and pack them into a set called nonUpdatedEdges .

The use of the coarseGridBox variable here seems redundant because we could have passed U.box () to �
the IntVectSet constructor directly with exactly the same effect. The IntVectSet constructor ignores the

information about the data placement in cells. The variable coarseGridBox is not used anywhere else.

The discussion of this module continues in the next chunk.

〈Apply the correction 6 〉 ≡6

FArrayBox &U = a uCoarse [it ()][fluxComp];
Box coarseGridBox = U.box ();

coarseGridBox .shiftHalf (fluxComp , 1);

18

IntVectSet nonUpdatedEdges (coarseGridBox);
See also chunks 7, 8, and 9.

This code is cited in chunks 4, 6, and 9.

This code is used in chunk 4.

¶ The next step is to give the right sign to a scale . We have shown above, equations (43) and (44), that the
sign of the curl-refluxing correction gets reversed on the low side of the grid. Function sign (side ()) is defined
on LoHiSide.cpp in the BoxTools subdirectory of the Chombo source and it returns −1 for the low side and +1
for the high side. So here we make use of it and define a correction coefficient local scale as −a scale for the
high side and +a scale for the low side, remembering that the actual correction is goin to be
−local scale ∗ (fine register + coarse register).

But the sign of the correction depends also on the direction of the face and the direction of the field being
corrected with respect to the direction of the face. Looking again at equations (34) and (35) we find that

for Bx hi face: the By correction is with a minus and the Bz correction is with a plus;

for the other faces, we rotate everything cyclicly to find that

for By hi face: the Bz correction is with a minus and the Bx correction is with a plus;

for Bz hi face: the Bx correction is with a minus and the By correction is with a plus.

This logic is implemented by the ((fluxComp + 1) % (SpaceDim) ≡ idir) expression. It works as shown in
Table 2. In other words we change the sign of local scale again for Bz on the Bx face, for Bx on the By face and

Table 2: Value table for if ((fluxComp + 1)%(SpaceDim)) local scale *= −1
face idir component fluxComp (fluxComp + 1) % 3 multiply by side local scale

Bx 0 By 1 2 +1 lo a scale

hi −a scale

Bz 2 0 −1 lo −a scale

hi a scale

By 1 Bz 2 0 +1 lo a scale

hi −a scale

Bx 0 1 −1 lo −a scale

hi a scale

Bz 2 Bx 0 1 +1 lo a scale

hi −a scale

By 1 2 −1 lo −a scale

hi a scale

for By on the Bz face. Remembering about the change of sign due to the side we find that, miraculously, we
end up with just the right correction signs for all faces and for all directions of the refluxed fields.

The variable testDir is redundant. It is not used anywhere. �
Another issue to ponder on is what if SpaceDim 6= 3. The code is not developed to handle this case.

There is an assert (SpaceDim ≡ 3) clause in LevelFluxRegisterEdge ::getRegComp (). That method is

then called by LevelFluxRegisterEdge :: incrementCoarse () and by

LevelFluxRegisterEdge :: incrementFine (). Consequently a two-dimensional version of a Chombo

program that tries to increment the LevelFluxRegisterEdge registers will abort if it has been compiled

with the DEBUG flag.

The discussion of this module continues in the next chunk.

〈Apply the correction 6 〉 +≡7

Real local scale = −sign (side ()) ∗ a scale ;
int testDir = (fluxComp + 1) % (SpaceDim);

if (((fluxComp + 1) % (SpaceDim)) ≡ idir) local scale ∗= −1;

19

¶ refluxLocations is an array of LayoutData defined by LayoutData〈Vector〈Vector〈IntVectSet〉〉〉
refluxLocations [SpaceDim ∗ 2]. The array entries correspond to directions and sides (hence the SpaceDim ∗ 2
size), i.e., there is an entry for the low side of the x direction and for the high side, and the same for y and z.
Function index (idir , side ()) retrieves the corresponding slot. And so refluxLocations [index (idir , side ())] is a
LayoutData that corresponds to this face direction and to this side.

Now, what is this layout. Ultimately we will have a set of cells for which we need to do the refluxing assigned
to each box. But if, say, the face is Bx, then we will have a separate set for By refluxing and a separate one for
Bz refluxing, so we should have separate layouts for each fluxComp . And so,
refluxLocations [index (idir , side ())][it ()][fluxComp] is this set.

Because of the way the cells are collected, this set is further subdivided into slices that correspond to the fine
grid boxes, which is why &ivsV is not a reference to IntVectSet, but a reference to Vector〈IntVectSet〉.

The same slices chop into portions a device that converts it (), which points to a coarse grid box on which
the field a uCoarse is defined, to a corresponding vector of the coarse register boxes. The coarse register lives
on top of the “coarsened” fine grid, so its numbering system and box layout is different from that of the coarse
grid. A single coarse grid box may overlap with several fine grid boxes or coarse register boxes. This is where
the slices originate from. The converter is called coarToCoarMap . Apart from its division into slices, there are
different assignments for different directions idir and different sides.

The two instructions in this chunk extract the slice vectors for the refluxLocations and for the
coarToCoarMap that correspond to the coarse grid box it (), the direction and side of the face, and, in case of
refluxLocations also the field component to be refluxed. The sets are then called ivsV and the maps indexV .

〈Apply the correction 6 〉 +≡8

Vector〈IntVectSet〉 &ivsV = refluxLocations [index (idir , side ())][it ()][fluxComp];
Vector〈DataIndex〉 &indexV = coarToCoarMap [index (idir , side ())][it ()];

¶ Finally we get to the curl-refluxing correction itself. We loop over all slices of the set of cells that need to be
refluxed—for this coarse grid box, for this direction and side of the face and for this component fluxComp . For
each slice we associate the set iterator iv with the set of cells in this slice. We find the corresponding register
index, which is indexV [i] and make coar and fine point to the coarse and fine register portions that correspond
to this field component in this box.

Now we begin iterating over the cells of the set. If the set is empty, then, of course, we don’t do anything.
This is going to be the case for the coarse grid cells that do not abut the fine/coarse boundary. If the set is not
empty we apply the correction to U in cell iv () and to the component of U given by. . . comp (more about it
below).

But let us observe first that the correction is applied with a minus, which reverses the signs of all entries in
Table 2. We can, of course, define a scale as being −∆T , or we can accumulate terms in the fine and the coarse
registers with the opposite sign.

Whatever we do here, we must correlate it with what happens when we feed data into the registers. This �
is discussed in more detail in section 5.2.1, page 26.

The correction operation is enclosed in a loop over components comp . What is this business about? Isn’t the
component given by fluxComp? It is. fluxComp points to By or Bz if the face is Bx. But Chombo allows By

and Bz to be multicomponent objects too. This can be used, for example, to group several By and Bz fields, or
to combine By and Ey , or to have some higher rank tensor field defined on the FluxBox. But for a normal B

field, we would have that m nComp = 1. Because of the way FluxBox is defined, we have to address all
possible components of each flux .

The BaseFab construct U(iv (), comp) returns a modifiable lvalue reference to the comp component

value defined at position iv () in the domain. The resulting assignment is a point operation, not a vector one.

In turn, the loop over the components comp , is enclosed in the if statement that executes the update only if
the cell is still in the nonUpdatedEdges set. Let us recall that we have constructed this set at the beginning of
the 〈Apply the correction 6 〉 module to contain all cells of the coarse grid box that corresponds to this
fluxComp . As the updates are carried out, the cells are removed from the set by nonUpdatedEdges −= iv ().

20

This way even if a given cell appears more than once in the refluxLocations sets, the corresponding update will
not be repeated.

And this is it for refluxCurl .

〈Apply the correction 6 〉 +≡9

IVSIterator iv ;

for (int i = 0; i < ivsV .size (); ++i) {
iv .define (ivsV [i]);

const FArrayBox &coar = coarReg [indexV [i]][fluxComp];
const FArrayBox &fine = fineRegLocal [indexV [i]][fluxComp];

for (iv .begin (); iv .ok (); ++iv) {
if (nonUpdatedEdges .contains (iv ())) {

for (int comp = 0; comp < m nComp ; ++comp)
U(iv (), comp) −= local scale ∗ (coar (iv (), comp) + fine (iv (), comp));

nonUpdatedEdges −= iv ();
}
}
}

21

5 Managing the Registers

The LevelFluxRegisterEdge class provides a method for incrementing the fine register, incrementFine , and
a method for incrementing the coarse register, incrementCoarse . These are used to accumulate terms such as
〈ez(i, j + 2, k̄)〉/3 at t = T + ∆T/6, T + ∆T/2, T + 5∆T/6 in the fine register and −Ez(I, J, K, T) at
t = T + ∆T/2 in the coarse register.

The idea is that as we time step the system, as the required fields become available, we calculate the register
contributions on the run and add them to whatever is in the register already—ultimately to use the
accumulated content of the register when we are ready to apply the refluxing correction. For this to work, we
must have one additional function, a function that wipes the registers clean before we restart the accumulation.
The registers should be wiped immediately after the refluxing correction has been applied.

22

5.1 Wiping the Registers Clean

The function that cleans both registers is setToZero . And here we have its listing. The function is so simple
that it requires little explanation. Let us recall that the registers are arrays of LevelData〈FluxBox〉,
numbered by face directions and face sides. Given both, index (idir , side ()) retrieves the appropriate slot. The
function loops over all slots, then for each slot over all boxes of both registers and for each box it sets all
flux-fields of the corresponding FluxBox to zero.

〈 setToZero 11 〉 ≡11

void LevelFluxRegisterEdge ::setToZero ()
{

SideIterator side ;

for (int idir = 0; idir < SpaceDim ; ++idir) {
for (side .begin (); side .ok (); ++side) {

LevelData〈FluxBox〉 &fineReg = fabFine [index (idir , side ())];
LevelData〈FluxBox〉 &coarReg = fabCoarse [index (idir , side ())];

for (DataIterator dit = fineReg .dataIterator (); dit .ok (); ++dit) fineReg [dit ()].setVal (0.0);
for (DataIterator dit = coarReg .dataIterator (); dit .ok (); ++dit) coarReg [dit ()].setVal (0.0);
}
}
}

This code is used in chunk 39.

23

5.2 Incrementing the Coarse Register

The incrementCoarse method is the simpler one of the two, so we begin our discussion from it. Its arguments
are as follows.

FArrayBox &a coarseFlux This is an FArrayBox , not a LevelData. This is because incrementCoarse

should be invoked when looping over the boxes of the coarse level to evaluate its fields. On this occasion,
a user designed Fortran routine should be configured to evaluate contributions to the register as well.
These should be then loaded into a coarseFlux and passed to incrementCoarse .

Let us use equation (34) as an example.

In this case the coarse flux correction to be put in the register is simply Ez(I, J, K, T + ∆T/2) and the
coarse flux to be corrected on the Bx face is By. The code here assumes that Ez is edge mounted,
meaning that the FArrayBox type is (NODE, NODE, CELL).

The user should ensure that this is indeed the case. �
Real a scale This is the scaling factor, which in our example deriving from equation (34) could be set to

1/∆X . If we do so then a scale in the call to refluxCurl would be just ∆T .

DataIndex &a coarseDataIndex This is the it () that we see in the Chombo for loops so often, that is, the
object returned by the data iterator—the data index.

const Interval &a srcInterval This is the source interval. Since FArrayBox may be a multicomponent
object—there may be several Ez fields put together into it, or both B and E could be combined into a
single FArrayBox—we need to specify from which slots to take the data.

const Interval &a dstInterval Here we specify into which slots to write the data.

int a dir This is the face direction.

The code assumes a convention that the flux entered into the coarse register at this stage should be a low
side flux. We will discuss this and the sign convention in more detail in section 5.2.1, page 26.

〈 incrementCoarse 12 〉 ≡12

void LevelFluxRegisterEdge :: incrementCoarse (FArrayBox &a coarseFlux ,Real a scale , const

DataIndex &a coarseDataIndex , const Interval &a srcInterval , const Interval &a dstInterval , int

a dir) {〈Body of incrementCoarse 13 〉}
This code is used in chunk 39.

¶ The body of the method begins with sanity checks. We check if the object (of class
LevelFluxRegisterEdge) is fully defined (and allocated) first. Then we check that the input flux,
a coarseFlux , is properly defined too, for example, that its box is not empty. We ensure that the direction of
the flux to be corrected is well defined as well. It must be between 0 and SpaceDim − 1.

The number of slots on the destination side must be the same as the number of slots on the source side, and
the number of slots must not exceed the number of components that the LevelFluxRegisterEdge object has
been built for.

Note that all these sanity checks will work only if the code has been compiled with the DEBUG flag. �
〈Body of incrementCoarse 13 〉 ≡13

assert (isDefined ());
assert (¬a coarseFlux .box ().isEmpty ());
assert (a dir ≥ 0);
assert (a dir < SpaceDim);
assert (a srcInterval .size () ≡ a dstInterval .size ());
assert (a srcInterval .begin () ≥ 0);
assert (a srcInterval .end () < a coarseFlux .nComp());
assert (a dstInterval .begin () ≥ 0);
assert (a dstInterval .end () < m nComp);

See also chunks 14 and 15.

This code is used in chunk 12.

24

¶ Next we find the direction of the E field passed to incrementCoarse in its first argument.
Consider again equation (34). Suppose the face is Bx and the component is By. The field residing on

a coarseFlux should be Ez (plus/minus the sign and the scaling factor).
As we have remarked above, the box extracted from the Ez field will be of type (NODE, NODE, CELL). The loop

below skips the face direction x and then chooses the remaining direction to correspond to the CELL direction of
the box, which is z. And so, fluxComp becomes z. This will work similarly for other cyclic permutations of x, y
and z. In other words, the fluxComp component here ends up being the component of the electric field that’s
been passed to the function as its first argument.

Before leaving this part of the code we check that fluxComp has actually been assigned. We set it to −1
originally. The code will abort if it has been compiled with the DEBUG option and if fluxComp remains −1. This
will happen if the box is of a wrong type.

〈Body of incrementCoarse 13 〉 +≡14

Box thisBox = a coarseFlux .box ();
int fluxComp = −1;

for (int sideDir = 0; sideDir < SpaceDim ; sideDir ++) {
/∗ we do nothing in the direction normal to face ∗/

if (sideDir 6= a dir) {
if (thisBox .type (sideDir) ≡ IndexType ::CELL) {

fluxComp = sideDir ;
}
}
}
assert (fluxComp ≥ 0);

¶ And finally we get to the place where the register gets incremented. Function getRegComp is used to return
the component of the register that will be incremented. This is the same component as the component of the B

field that will be corrected by function refluxCurl . In the case of equation (34), a dir , i.e., the face, is x, the
component of the E field is z, which is also what fluxComp becomes, and the component of the field to be
corrected should be y. And this is what getRegComp will return. It always returns the third component that is
neither of the two given to it as arguments.

Now we iterate over the sides, i.e., we do things for Lo and Hi sides. For each side () and face direction a dir

we read the register box index, that corresponds to the FArrayBox box we’re working on, from the
coarToCoarMap and save it on registerIndex . This is not actually a single index, but the whole array of
indexes, because a single coarse level box may overlap with several coarse register boxes.

We also retrieve the LevelData〈FluxBox〉 from the coarse register that corresponds to this face direction
and side and call this registers .

Next we half-shift a coarseFlux in the a dir direction depending on which side we are on. For the low side
we half-shift it by −1 and for the high side we half-shift it by +1.

As we have discussed above, a half-shift by +1 doesn’t change the box coordinates, only its type. But a
half-shift by −1 does change both the coordinates and the type of the box. For example, if we have a FluxBox

field a defined on

b: Box (0,0) to (5,5) type [(0,0)]

then

a[0].box(): Box (0,0) to (6,5) type [(1,0)]

half-shifting this box in the 0 direction by +1 produces

a[0].box.shiftHalf(0,1): Box (0,0) to (6,5) type [(0,0)]

but half-shifting it in the 0 direction by −1 produces

a[0].box.shiftHalf(0,-1): Box (-1,0) to (5,5) type [(0,0)]

25

And this is exactly what we need on the low side, cf. equations (43) and (44).
Now we have to iterate over all coarse register boxes that may overlap with the given coarse level box, and

the number of these is registerIndex .size (). We extract the portion of the register that corresponds to this box
(registerIndex [i]) and to this regComp direction, i.e., the direction of the B field, for which this correction is
being collected, and simply add the a coarseFlux field (i.e., Ez in our example), scaled by −a scale (i.e.,
−1/∆X in our example, watch the minus here) to it, for all slots between a srcInterval .begin () and
a srcInterval .begin () + a srcInterval .size (). This is not a point operation. It is a vector operation, i.e., whole
arrays are multiplied and then added together.

Having done so, we half-shift a coarseFlux back into place in preparation for the next iteration over side s.
The FArrayBox ::plus operation works only on the intersection of the two FArrayBoxes.

〈Body of incrementCoarse 13 〉 +≡15

int regComp = getRegComp (a dir ,fluxComp);
SideIterator side ;

for (side .begin (); side .ok (); ++side) {
Vector〈DataIndex〉 ®isterIndex = coarToCoarMap [index (a dir , side ())][a coarseDataIndex];
LevelData〈FluxBox〉 ®isters = fabCoarse [index (a dir , side ())];

a coarseFlux .shiftHalf (a dir , sign (side ()));
for (int i = 0; i < registerIndex .size (); ++i) {

FluxBox ® = registers [registerIndex [i]];
FArrayBox ®Dir = reg [regComp];

regDir .plus (a coarseFlux ,−a scale , a srcInterval .begin (), a dstInterval .begin (), a srcInterval .size ());
}
a coarseFlux .shiftHalf (a dir ,−sign (side ()));
}

5.2.1 The Saga of the Signs

There is a mind-boggling abundance of minuses in those places in the code, where the actual formulas are
entered. So what is the ultimate sign on the actual expressions and what should we feed into incrementCoarse

and then into refluxCurl to get the signs right?
Looking at equations (43) and (44) for the low side we see that we should eventually produce

−Ez(I + 1, J, K, T + ∆T/2)
∆T

∆X
(47)

as the final coarse register correction to By(I, J, K, T + ∆T) and

+Ey(I + 1, J, K, T + ∆T)
∆T

∆X
(48)

as the final coarse register correction to Bz(I, J, K, T + ∆T) on the low side Bx faces.
On the high side Bx faces we should have

+Ez(I, J, K, T + ∆T/2)
∆T

∆X
(49)

as the final coarse register correction to By(I, J, K, T + ∆T) and

−Ey(I, J, K, T + ∆T/2)
∆T

∆X
(50)

as the final coarse register correction to Bz(I, J, K, T + ∆T).
Suppose we call incrementCoarse with a coarseFlux being Ez(I, J, K, T + ∆T/2) and mounted on a box of

type (NODE, NODE, CELL), a scale being 1/∆X , and a dir being x (or 0). Then, as we have already seen above,
fluxComp ends up being z and regComp evaluates to y, which is the direction of the By field that should be
corrected by curlReflux .

26

And so, the coarse register slot we end up operating on first is fabCoarse [index (x,Lo)][box][y], and then
fabCoarse [index (x,Hi)][box][y]. Then there is this business with half-shifts, so that in the first case we end up
adding

−
1

∆X
Ez(I + 1, J, K, T + ∆T/2) (51)

to the register and in the second case

−
1

∆X
Ez(I, J, K, T + ∆T/2). (52)

Let us observe that the code does not change the sign of the contribution at this stage depending on the side.
This will happen when we call curlReflux .

Table 3 sums up whats goes where for Ez either face or edge mounted.

Table 3: Coarse register assignment for a call on the Bx face with a coarseFlux set to Ez and a scale set to
1/∆X .

register slot register entry
fabCoarse [index (x,Lo)][box][y] −Ez(I + 1, J, K, T + ∆T/2)/∆X
fabCoarse [index (x,Hi)][box][y] −Ez(I, J, K, T + ∆T/2)/∆X

So now, let us call curlReflux and see what happens there.
We call curlReflux with the coarse grid version of B and with its a scale set to ∆T . What we are interested

in is what is going to happen for idir = 0, i.e., x and fluxComp = 1, i.e., y. We are going to correct
By(I, J, K, T + ∆T). From Table 2 we find that the local scale factor for By on the Bx face is +∆T for the low
side, and −∆T for the high side.

Let us focus on the low side. The actual slot we take from the coarse register is
fabCoarse [index (x,Lo)][box][y], which contains −Ez(I + 1, J, K, T + ∆T/2)/∆X . comp in this case just stays
0, and the correction is −local scale ∗ fabCoarse [index (x,Lo)][box][y], which evalutes to

+Ez(I + 1, J, K, T + ∆T/2)
∆T

∆X
, (53)

so the sign comes out wrong.
This can be remedied by calling incrementCoarse with −Ez and +1/∆X or with +Ez and −1/∆X . The

general rule is that the sign of the field fed into the coarse register should be such as is required on the low side
of the face.

27

5.3 Incrementing the Fine Register

Let us have a look again at equation (43) on page 15. The role of incrementFine is to accumulate terms such as

〈ez(i, j + 2, k̄)〉|T+∆T/6

3

1

∆X
=

(ez(i, j + 2, k, T + ∆T/6) + ez(i, j + 2, k + 1, T + ∆T/6)) /2

3

1

∆X
(54)

for every fine level time step that fits within a given coarse level time step. We will see that this original version
of incrementFine makes an assumption in one place that will break our FDTD fine level time step
(∆t = ∆T/3), but this is easy to change and both the location and the required change will be flagged.

The function takes the following arguments

FArrayBox &a fineFlux This is the fine flux. For instance, given the above example, the ez field

Real a scale This is the scaling factor. For instance, given the above example, this could be 1/(3∆X). But
analyzing the signs further down we will discover that we should set it to −1/(3∆X).

DataIndex &a fineDataIndex This is the pointer to the box of the fine level, that a fineFlux lives on, as
obtained by it () when iterating over the boxes of the fine level DataLayout . This function should be used
similarly to how incrementCoarse is used. For every box of the fine level we operate on, we should
evaluate a fineFlux as well, using a specially designed Fortran routine and then pass the result to
incrementFine .

Interval &a srcInterval As was the case with incrementCoarse , this function can be used for a multiple-slot
version of ez, if we have more than one. So this variable specifies the interval from which we take the data.

Interval &a dstInterval And this variable specifies the interval into which we intend to write the data.

int a dir This is the face direction.

Side ::LoHiSidea sd Here we specify the side (low or high) for which we do all this—meaning that when this
function is called it will have to be called twice, for the low side first and then for the high side, explicitly.

〈 incrementFine 17 〉 ≡17

void LevelFluxRegisterEdge :: incrementFine (FArrayBox &a fineFlux ,Real a scale , const

DataIndex &a fineDataIndex , const Interval &a srcInterval , const Interval &a dstInterval , int

a dir ,Side ::LoHiSidea sd) {〈Body of incrementFine 18 〉}
This code is used in chunk 39.

¶ The body of the method begins with some sanity checks. First we make sure that the register is fully
defined. Then we check that a fineFlux is properly defined too, in particular, that it does not sit on an empty
box. We ensure that we have the same number of slots both on the input and on the output objects, and that
the slot intervals fit within the maximum slot intervals for both objects.

Then we make sure that the face direction is correct as well, i.e., within the limit of the space dimensionality
and that the side is restricted to either low or high.

〈Body of incrementFine 18 〉 ≡18

assert (isDefined ());
assert (¬a fineFlux .box ().isEmpty ());
assert (a srcInterval .size () ≡ a dstInterval .size ());
assert (a srcInterval .begin () ≥ 0);
assert (a srcInterval .end () < a fineFlux .nComp());
assert (a dstInterval .begin () ≥ 0);
assert (a dstInterval .end () < m nComp);
assert (a dir ≥ 0);
assert (a dir < SpaceDim);
assert ((a sd ≡ Side ::Lo) ∨ (a sd ≡ Side ::Hi));

See also chunks 19, 20, 21, 22, 23, and 24.

This code is used in chunk 17.

28

¶ Here a scale is additionally divided by the refinement ratio. This corresponds, as we will see later, to taking
the average that we have marked with the bar in equation (54), i.e., k̄. When fully expanded on the right hand
side we find that the bracketed expression in the nominator is divided by 2. This 2 is m nRefine .

For CH_SPACEDIM ≡ 2 this whole code will not work, so it would be best to flag this option as leading to �
error as well.

〈Body of incrementFine 18 〉 +≡19

#if (CH_SPACEDIM ≡ 2)
Real denom = 1;

#elif (CH_SPACEDIM ≡ 3)
Real denom = m nRefine ;

#else

bogus spacedim ;
#endif

Real scale = a scale/denom ;

¶ This part of the code is identical to what we have seen in incrementCoarse , section 5.2. Here we find, again,
the direction of the e field passed to incrementFine in its first argument. As was the case in incrementCoarse

we expect that e will be edge mounted, which means that, for example, the ez component will live in a box of
type (NODE, NODE, CELL). So here we extract the box from the field, loop over all possible directions, with the
exception of the face direction a dir (because the e fields should live on its edges), and then choose the
direction that corresponds to CELL. This becomes the fluxComp direction. If no such direction has been found,
it means that the first argument is incorrectly sized and the program aborts,

but only if it’s been compiled with the DEBUG option. �
〈Body of incrementFine 18 〉 +≡20

Box thisBox = a fineFlux .box ();
int fluxComp = −1;

for (int sideDir = 0; sideDir < SpaceDim ; sideDir ++) {
if (sideDir 6= a dir) {

if (thisBox .type (sideDir) ≡ IndexType ::CELL) {
fluxComp = sideDir ;
}
}
}
assert (fluxComp ≥ 0);

¶ The logic of incrementFine is somewhat different from the logic of incrementCoarse , but similarities do
extend at least to this chunk, where we find, as we did in incrementCoarse , the component of the B field to be
corrected—this is the component that is different from both a dir and fluxComp .

Then we retrieve the portion of the fine register that corresponds to (1) this fine level box, (2) this face
direction, (3) this side, and (4) this component of the B field to be corrected, and call this reg . This is an
FArrayBox, which may already contain some valid data, and to which we are going to add more.

Let us note here that the fine register is defined on the same grid as the fine level. This is why we do not
need to use a translation map to switch from a fineDataIndex to the register index, as we had to do in
incrementCoarse . Here it is the same index.

Last, but not least, we half-shift the input a fineFlux in the face direction either to the left or to the right
depending on the side. After we have fed the data into the register, a fineFlux will be shifted back.

〈Body of incrementFine 18 〉 +≡21

int regcomp = getRegComp(a dir ,fluxComp);
FluxBox &thisReg = fabFine [index (a dir , a sd)][a fineDataIndex];
FArrayBox ® = thisReg [regcomp];

a fineFlux .shiftHalf (a dir , sign (a sd));

29

¶ Here we have a new part of the code that we haven’t seen in incrementCoarse , but we have seen similar
devices in PiecewiseLinearFillPatchFace. We are extracting here a box from m domainCoarse , which we
will then use to screen out cells that protrude outside the physical domain.

The operator &= modifies the box on the left by intersecting it with the argument box. Box ::grow grows it
by two cells, in this case, in each direction. Box ::surroundingNodes (regcomp) converts the box to
(CELL, NODE, CELL) if regcomp is y. This makes the box larger too, because it incorporates the Hi boundary of
it in the regcomp direction.

Growing the box first and then intersecting it with its previous ungrown version accomplishes nothing. �
The box returns to the ungrown version.

Finally we intersect the register box with shiftedValidDomain and restrict the BoxIterator to it. This is
where we chop off reg .box () cells that may protrude beyond the outer boundary of the coarse domain.

〈Body of incrementFine 18 〉 +≡22

Box shiftedValidDomain = m domainCoarse .domainBox ();

shiftedValidDomain .grow (2);
shiftedValidDomain &= m domainCoarse ;
shiftedValidDomain .surroundingNodes (regcomp);

BoxIterator regIt (reg .box () & shiftedValidDomain);

¶ This double for loop is the heart of incrementFine .
We loop over the cells of the fine register box, since this is what regIt () points to. But this is a box of the

coarsened fine grid, which means that we skip every second cell of the box if m nRefine is 2. So now we are
going to recover those sub-cells.

We create a single cell box that corresponds to the coarseIndex = regIt (). This is going to be a
(CELL, CELL, CELL) box. We then switch it to NODE in the regcomp direction. Invoking the example used above,
equation (54), we would have a dir = 0 (i.e., x), fluxComp = 2 (i.e., z), and regcomp = 1 (i.e., y), so the box
would end up being (CELL, NODE, CELL). Now we create a refinement vector (2, 2, 2) and refine the box.

This will refine the box in the directions perpendicular to regcomp . For example, if coarseIndex is (4, 5, 6),
then single cell box would be

Box (4,5,6) to (4,5,6) type [(0,0,0)]

After the shiftHalf operation the box would become

Box (4,5,6) to (4,5,6) type [(0,1,0)]

and after the refine

Box (8,10,12) to (9,10,13) type [(0,1,0)]

The reason for this is that the refine operation works differently on CELL centered cells and differently on NODE

centered ones.
The box is then grown depending on whether we are on the low or on the high side. Our example box

discussed above will become

Box (9,10,12) to (9,10,13) type [(0,1,0)]

on the low side and

Box (8,10,12) to (8,10,13) type [(0,1,0)]

on the high side.
Having produced an appropriate box, we iterate over its points, which means that we collect data from

(9,10,12)

(9,10,13)

30

on the low side and from

(8,10,12)

(8,10,13)

on the high side. But this is exactly what we have in equation (54), where k̄ implies the summation over k and
k + 1, i.e., in this case, over k = 12 and k = 13.

The summation occurs upon multiplication of each term taken from a fineFlux by scale .
In our case, looking again at equation (54), scale should be 1

6∆X , where 1/3 comes from the time step and
1/2 comes from the division of a scale by m nRefine . This implies that we should set a scale to be ± 1

3∆X .

〈Body of incrementFine 18 〉 +≡23

for (regIt .begin (); regIt .ok (); ++regIt) {
const IntVect &coarseIndex = regIt ();
Box box (coarseIndex , coarseIndex);

box .shiftHalf (regcomp ,−1);

IntVect refineVect (D_DECL(m nRefine ,m nRefine ,m nRefine));

box .refine (refineVect);
if (a sd ≡ Side ::Lo) box .growLo(a dir ,−(m nRefine − 1));
else box .growHi (a dir ,−(m nRefine − 1));

BoxIterator fluxIt (box);

for (fluxIt .begin (); fluxIt .ok (); ++fluxIt) {
int src = a srcInterval .begin ();
int dest = a dstInterval .begin ();

for (; src ≤ a srcInterval .end (); ++src , ++dest)
reg (coarseIndex , dest) += scale ∗ a fineFlux (fluxIt (), src);

}
}

¶ This closes the function. Before returning we shiftHalf the input field a fineFlux back into place.

〈Body of incrementFine 18 〉 +≡24

a fineFlux .shiftHalf (a dir ,−sign (a sd));

5.3.1 The Saga of the Signs, Again

What exactly should we feed into incrementFine? Let us again inspect equations (43) and (44). These are the
corrections to By and Bz that should be applied on the low side. The fine side contribution to the By

correction on the low side of the Bx face is

〈ez(i, j + 2, k̄)〉|T+∆T/6 + 〈ez(i, j + 2, k̄)〉|T+∆T/2 + 〈ez(i, j + 2, k̄)〉|T+5∆T/6

3

∆T

∆X
(55)

and the fine side contribution to the Bz correction on the low side of the Bx face is

−
〈ey(i, j̄, k + 2)〉|T+∆T/6 + 〈ey(i, j̄, k + 2)〉|T+∆T/2 + 〈ey(i, j̄, k + 2)〉|T+5∆T/6

3

∆T

∆X
(56)

Function incrementFine will automatically carry out the summations over k̄ for (55) and j̄ for (56) and the
divisions by 2. But we have to take care of ∆T/(3∆X).

Inspection of the incrementFine code shows that there is no hocus pocus with signs here. The sign of scale

and a scale is not altered anywhere and the sum that goes into reg (coarseIndex , dest) is all addition.
Whereas the correction (55) is with the plus sign on the low side, it should be with the minus on the high

side as we find in equation (34) and similarly for Bz on the high side, as we find in equation (35), where the
correction should be entered with the plus. But let us recall that refluxCurl does take care of changing the
correction sign depending on the side.

31

The actual correction that is implemented by refluxCurl is −local scale ∗ (coar + fine), so the contribution of
the fine register is −local scale ∗ fine , which is going to be −a scale ∗ fine on the low side of the Bx face for the
By correction, as shown in table 2, page 19. Let us make a scale here ∆T .

To get the plus for the By correction on the low side of the Bx face we need to set a scale on the call to
incrementFine to −1/(3∆X) on the low side and on the high side as well, because refluxCurl will take care of
making the sign dependent on the side.

In other words, we feed the high side field to incrementFine , unlike was the case with incrementCoarse , �
where we fed the low side field. Why is this so? This is because both registers contribute their corrections in

refluxCurl with the same sign, whereas the actual signs of the corrections contributed by coarse and fine

registers in equations (43), (44), (34) and (35) were opposite.

32

6 Auxiliary Functions

Here we have three auxiliary functions, two of which we have encountered already, namely index and
getRegComp , the third one, setDefaultValues , is used by the class constructors.

All three are short and do not require much explanation. index converts dir and side into a single number
between 0 and 5, so that we can access the appropriate register slot. getRegComp finds, in a somewhat
convoluted manner, the third dimension that is perpendicular to both faceDir and edgeDir .

It is here and only here that SpaceDim other than 3 will fail on the assert and abort the program. We �
should have something similar in the constructor.

〈Auxiliaries 26 〉 ≡26

void LevelFluxRegisterEdge ::setDefaultValues ()
{

m isDefined = false ;
m nComp = −1;
m nRefine = −1;
}

int LevelFluxRegisterEdge :: index (int dir ,Side ::LoHiSide side)
{

return side ∗ SpaceDim + dir ;
}

int LevelFluxRegisterEdge ::getRegComp (const int &faceDir , const int &edgeDir)
{

int regcomp ;

assert (SpaceDim ≡ 3);
if (faceDir ≡ 0) {

regcomp = 1;
if (edgeDir ≡ 1) regcomp = 2;
}
else if (faceDir ≡ 1) {

regcomp = 0;
if (edgeDir ≡ 0) regcomp = 2;
}
else if (faceDir ≡ 2) {

regcomp = 0;
if (edgeDir ≡ 0) regcomp = 1;
}
return regcomp ;
}

bool LevelFluxRegisterEdge :: isDefined () const

{
return m isDefined ;
}

void LevelFluxRegisterEdge ::undefine ()
{

m isDefined = false ;
}

This code is used in chunk 39.

33

7 Debugging Utilities

These five functions don’t really do anything, since the calls to dumpLDF () are commented out and the
function itself is not provided. They should be considered merely place holders.

〈Debugging Utilities 27 〉 ≡27

void LevelFluxRegisterEdge ::dump ()
{

for (int idir = 0; idir < SpaceDim ; idir ++) {
dumpLoCoar (idir);
dumpLoFine (idir);
dumpHiCoar (idir);
dumpHiFine (idir);
}
}

void LevelFluxRegisterEdge ::dumpLoCoar (int a idir)
{

const LevelData〈FluxBox〉 &loFabCoar = fabCoarse [index (a idir ,Side ::Lo)];

cout ≪ "LoFabCoar::"≪ a idir ≪ endl ; /∗ dumpLDF (&loFabCoar); ∗/
}

void LevelFluxRegisterEdge ::dumpHiCoar (int a idir)
{

const LevelData〈FluxBox〉 &hiFabCoar = fabCoarse [index (a idir ,Side ::Hi)];

cout ≪ "HiFabCoar::"≪ a idir ≪ endl ; /∗ dumpLDF (&hiFabCoar); ∗/
}

void LevelFluxRegisterEdge ::dumpLoFine (int a idir)
{

const LevelData〈FluxBox〉 &loFabFine = fabFine [index (a idir ,Side ::Lo)];

cout ≪ "LoFabFine::"≪ a idir ≪ endl ; /∗ dumpLDF (&loFabFine); ∗/
}

void LevelFluxRegisterEdge ::dumpHiFine (int a idir)
{

const LevelData〈FluxBox〉 &hiFabFine = fabFine [index (a idir ,Side ::Hi)];

cout ≪ "HiFabFine::"≪ a idir ≪ endl ; /∗ dumpLDF (&hiFabFine); ∗/
}

This code is used in chunk 39.

34

8 The Class Constructor

The object construction for the class is deferred through various wrappers to function define that allocates
space for and structures various protected variables, which we have already encountered, namely

fabCoarse the coarse register

fabFine the fine register

refluxLocations a list of cells for which we need to reflux, used by refluxCurl

coarToCoarMap a map that converts coarse level grid locations to the coarsened fine level grid locations

crseCopiers predefined copiers to be use when copying data between the fine register, fabFine , and a
temporary register, fineRegLocal , used by refluxCurl

m nComp internal copy of the number of components

m nRefine internal copy of the refinement ratio

m domainCoarse problem domain of the coarse level.

Apart from defining the structures, function define also fills refluxLocations and coarToCoarMap .

35

8.1 Define

define is a pretty horrible function that is some 275 lines long and convoluted. But it’s easier to understand
when it’s split into chunks.

It’s basic structure is a loop over face directions and sides. Within this loop there are two sub-loops: the first
one iterates over the fine register boxes, which are related to, but not the same as the fine level boxes, and the
second one iterates over the coarse grid boxes. The loop over the fine register boxes splits into three conditions
depending on where the boxes reside with respect to the computational domain. The loop over the coarse grid
boxes is the one that puts data into refluxLocations and coarToCoarMap . It also splits into two conditions
depending on where the coarse grid boxes reside.

A great deal of the function’s complexity derives from its handling of periodic boundaries. It would be �
good to write a simpler and cleaner function that does not handle periodic boundaries and then perhaps

wrap another class around it that does.

This version of define takes the following arguments.

const DisjointBoxLayout &a dbl A disjoint box layout of the fine grid.

const DisjointBoxLayout &a dblCoarse A disjoint box layout of the coarse grid.

const ProblemDomain &a dProblem A fine grid version of the problem domain.

int a nRefine Refinement ratio.

int a nComp Number of components per cell side to curl-reflux—this is usually one, not three, e.g., in case of
a B field, Bx, By and Bz all live on different sides.

The body of the function begins with various trivial operations. First we set m isDefined to true , even
though this is a little too early. We really should wait with it until the end. Then we check that the refinement
ratio and the number of components are sound, and make sure that the problem domain is not empty.

a nComp and a nRefine are copied onto the protected class variables m nComp and m nRefine . The
problem domain is coarsened and we make sure that its periodicity is the same as that of the coarse level
disjoint box layout.

Then we size the array of copiers, but don’t do anything to them yet, define the shift iterator, which will be
needed to handle periodic boundary conditions, if such are present, and extract a box from the coarsened
problem domain. We will test boxes of the fine and coarse level against this box to check if any stick out. This
box is further conditioned depending on whether the problem domain is periodic. If it is, then the box is
shortened in the direction of periodicity by one layer of cells. Any fine or coarse grid level box that sticks out of
the domain box in a periodic direction, abuts the periodic boundary and so has to be treated specially.

Having dealt with these preliminaries we proceed to iterate over face directions and sides, which is deferred
to the next module, 〈 Iterate over Directions and Sides 30 〉.

〈define 29 〉 ≡29

void LevelFluxRegisterEdge ::define (const DisjointBoxLayout &a dbl , const DisjointBoxLayout

&a dblCoarse , const ProblemDomain &a dProblem , int a nRefine , int a nComp)
{

m isDefined = true ;
assert (a nRefine > 0);
assert (a nComp > 0);
assert (¬a dProblem .isEmpty ());
m nComp = a nComp ;
m nRefine = a nRefine ;
m domainCoarse = coarsen (a dProblem , a nRefine);
assert (a dblCoarse .checkPeriodic (m domainCoarse));
crseCopiers .resize (SpaceDim ∗ 2);

ShiftIterator shiftIt = m domainCoarse .shiftIterator ();
Box periodicTestBox (m domainCoarse .domainBox ());

36

if (m domainCoarse .isPeriodic ()) {
for (int idir = 0; idir < SpaceDim ; idir ++) {

if (m domainCoarse .isPeriodic (idir)) periodicTestBox .grow (idir ,−1);
}
}
〈 Iterate over Directions and Sides 30 〉
}

This code is cited in chunk 32.

This code is used in chunk 39.

¶ Within this loop we allocate space for the fine and coarse registers and structure them.
We begin from the fine register. First we create temporary box layouts, tmp and fineBoxes . These are

created just for this space dimension and for this side and they will be destroyed when we end this particular
iteration. We initiate tmp to be a coarsened image of the fine grid disjoint box layout. Then we perform a very
peculiar operation on it.

The standard Chombo operations adjCellHi and adjCellLo are defined for a Box, a DisjointBoxLayout

and for a ProblemDomain. When applied to a Box they return a new cell centered Box of a given length
(here the length is 1) and on the low or high side of the argument Box in a given direction idir .

For example, if

IntVect index1(D_DECL(4,5,6));

IntVect index2(D_DECL(6,7,8));

Box box(index1,index2);

Box newbox = adjCellHi(box, 0, 1);

then the two boxes print as follows:

box: Box (4,5,6) to (6,7,8) type [(0,0,0)]

newbox: Box (7,5,6) to (7,7,8) type [(0,0,0)]

The newbox here is a one-cell thick box that is drawn to the side of the original box.
When adjCellHi and adjCellLo are applied to a DisjointBoxLayout or to a ProblemDomain, they do it

to every box of the layout or the domain. In effect we end up with a new, quite particular disjoint box layout
that is going to stick out by one cell in the direction idir and on the side side (), and that is going to be made
just of the one-cell thick boundaries of all the boxes in the original layout. This is then written on fineBoxes ,
and this box layout is then used to define the fine register fabFine for this direction, for this side, and for the
number of components passed in a nComp . An example of such a fineBoxes layout is shown in Figure 3.

Next we define a structure that will hold information about cell faces that are right on the fine-coarse
boundary, as opposed to cell faces that abut other cells of the fine grid. This structure is coarseFineIVSVect

and it is a Vector of Vectors of IntVectSets, where the first Vector has SpaceDim slots and the second
vector’s length is the number of boxes in the fineBoxes layout.

Now we are ready to begin iteration over the fineBoxes , and the details of what we do here are deferred to
module 〈 Iterate over the Fine Register Boxes 31 〉. Within this module we will collect the boundary points in
coarseFineIVSVect by iterating over all boxes of the original coarsened fine box layout and subtracting them
from fineBoxes . What is going to be left will be the fineBoxes cells that dangle just outside of the fine level box
layout, i.e., the fine/coarse boundary—for this face direction and this side.

Having emerged from this loop we allocate space to refluxLocations and to coarToCoarMap for this face
direction and for this side, and then plunge into the second loop, this one over the coarse grid boxes. The
discussion of what goes on within it is deferred to module 〈 Iterate over the Coarse Grid Boxes 35 〉.

〈 Iterate over Directions and Sides 30 〉 ≡30

SideIterator side ;

for (int idir = 0; idir < SpaceDim ; ++idir) {
for (side .begin (); side .ok (); ++side) {

DisjointBoxLayout fineBoxes , tmp ;

37

-
idir

Figure 3: Example of the fabFine grid for idir = 0 and side() = Side ::Hi. The grid is made of the narrow boxes
that appear to the right of the original square boxes of the fine level grid.

coarsen (tmp , a dbl ,m nRefine);
if (side () ≡ Side ::Lo) adjCellLo (fineBoxes , tmp , idir , 1);
else adjCellHi (fineBoxes , tmp , idir , 1);
fabFine [index (idir , side ())].define (fineBoxes , a nComp);

Vector〈Vector〈IntVectSet〉〉 coarseFineIVSVect (SpaceDim);

for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++)
coarseFineIVSVect [faceDir].resize (fineBoxes .size ());
〈 Iterate over the Fine Register Boxes 31 〉

LayoutData〈Vector〈Vector〈IntVectSet〉〉〉 &ivsetsVect = refluxLocations [index (idir , side ())];

ivsetsVect .define (a dblCoarse);

LayoutData〈Vector〈DataIndex〉〉 &mapsV = coarToCoarMap [index (idir , side ())];

mapsV .define (a dblCoarse);
〈 Iterate over the Coarse Grid Boxes 35 〉
}
}

This code is cited in chunks 5, 29, and 35.

This code is used in chunk 29.

¶ Within this loop over all fineBoxes of the fine register, for this idir and side (), we loop over all directions
perpendicular to idir . We also number all the fineBoxes with i and use the box number to index IntVectSets
of coarseFineIVSVect as well.

For each faceDir (different from idir) we extract the Box from m domainCoarse and we first check if the
fine register Box pointed to by it2 () is contained within the domain box. If it is we execute the 〈Fine Register
Box in the Coarsened Domain’s Box 32 〉 module.

If this is not the case, we check if the coarse domain contains the fine register box it2 (). What is the
difference between one and the other? At first glance, it looks like the same thing.

The difference is that if a domain is periodic in some direction, then it is infinite in this direction. Therefore
any value of a cell index in this direction fits in the domain, and the cell is contained in the domain if the
remaining indexes fit too. On the other hand, if we extract a Box from the domain, and the Box is always

finite, and check if the Box contains the cell, then if the cell’s coordinates protrude in some direction, the cell is
not in the Box, and this is it. However, in this latter case the box may still abut the periodic boundary and
this, of course, must be handled.

38

Anyhow, we find that this second clause is for situations when the domain is periodic and the fine register
box, for this idir and this side (), sticks out from the domain box in the periodic direction. This is handled by
module 〈Fine Register Box in the Periodically Extended Domain 33 〉.

Finally, if the Box fits in neither of the two conditions, it means that it is really outside the computational
domain, and this is handled by module 〈Fine Register Box Outside 34 〉.

〈 Iterate over the Fine Register Boxes 31 〉 ≡31

LayoutIterator it = fineBoxes .layoutIterator ();
LayoutIterator it2 = fineBoxes .layoutIterator ();
int i = 0;

for (it2 .begin (); it2 .ok (); ++i, ++it2) {
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

if (faceDir 6= idir) {
IntVectSet &ivs = coarseFineIVSVect [faceDir][i];
const Box &compDomBox = m domainCoarse .domainBox ();

if (compDomBox .contains (fineBoxes .get (it2 ()))) {
〈Fine Register Box in the Coarsened Domain’s Box 32 〉
}
else if (m domainCoarse .contains (fineBoxes .get (it2 ()))) {
〈Fine Register Box in the Periodically Extended Domain 33 〉
}
else {
〈Fine Register Box Outside 34 〉
}
}
}
}

This code is cited in chunks 30, 35, and 36.

This code is used in chunk 30.

¶ Inside this 〈Fine Register Box in the Coarsened Domain’s Box 32 〉 module we get the fine register box
pointed to by it2 (), attach surrounding nodes in the faceDir direction, and this will make it node-centered in
this direction too, so we half-shift it in the faceDir direction by one half to make it again cell-centered, and
pack all its points into ivs , which is a C++ alias for coarseFineIVSVect [faceDir][i], where i is the number of
the Box in the fine register’s box layout.

If we now subtract all the boxes of the original fine level box layout (the square ones in Figure 3) from all the
boxes or the fine register box layout (the narrow vertical ones in Figure 3), what will be left in ivs will be only
the protruding one-cell thick boxes on the right of the whole layout, and this is how we identify the boundary
for this direction and for this side.

This is indeed what we do here.
We enter another loop over it (). For each box of the fine level box layout pointed to by it () we coarsen it,

then we attach surrounding nodes in the faceDir direction, half-shift by 1 in the faceDir direction to make it
again cell centered and subtract all its points from ivs .

If the domain is periodic and the coarsened fine level box abuts the domain boundary—and we test for it by
checking if it fits in the periodicTestBox we have constructed in module 〈define 29 〉—we go through a
procedure that we have discussed already in our weave of the PiecewiseLinearFillPatchFace class: we wrap
the box around the periodic boundary, for every direction in which periodicity occurs, subtract those points
from ivs , then shift the box back in place.

〈Fine Register Box in the Coarsened Domain’s Box 32 〉 ≡32

Box fineFaceBox = fineBoxes .get (it2 ());

fineFaceBox .surroundingNodes (faceDir);
fineFaceBox .shiftHalf (faceDir , 1);
ivs .define (fineFaceBox);
for (it .begin (); it .ok (); ++it) {

39

Box coarsenedFineBox = coarsen (a dbl [it ()], a nRefine);

coarsenedFineBox .surroundingNodes (faceDir);
coarsenedFineBox .shiftHalf (faceDir , 1);
ivs −= coarsenedFineBox ;
if (m domainCoarse .isPeriodic () ∧ ¬periodicTestBox .contains (coarsenedFineBox) ∧

¬periodicTestBox .contains (fineBoxes .get (it2 ()))) {
IntVect shiftMult (m domainCoarse .domainBox ().size ());

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect = shiftIt () ∗ shiftMult ;

coarsenedFineBox .shift (shiftVect);
ivs −= coarsenedFineBox ;
coarsenedFineBox .shift (−shiftVect);
}
}
}

This code is cited in chunks 31, 32, 33, and 36.

This code is used in chunk 31.

¶ Here we have the situation when the fine register box pointed to by it2 () sticks out of the problem domain
box, but in a direction in which the domain is periodic. Such a box is still in the domain. So what we do here is
as follows. First we make a copy of it on regBox . Then we shift the regBox in the periodic direction so as to
put it into the box of the domain. Once it is there we just repeat all the operations carried out in module 〈Fine
Register Box in the Coarsened Domain’s Box 32 〉 on it, i.e., we put all its points in ivs and then subtract all
boxes of the fine level box layout from ivs .

〈Fine Register Box in the Periodically Extended Domain 33 〉 ≡33

IntVect shiftMult (compDomBox .size ());
Box regBox = fineBoxes .get (it2 ());

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect (shiftIt () ∗ shiftMult);

regBox .shift (shiftVect);
if (compDomBox .contains (regBox)) {

assert (ivs .isEmpty ());

Box fineFaceBox = regBox ;

fineFaceBox .surroundingNodes (faceDir);
fineFaceBox .shiftHalf (faceDir , 1);
ivs .define (fineFaceBox);

ShiftIterator shiftIt2 = m domainCoarse .shiftIterator ();

for (it .begin (); it .ok (); ++it) {
Box coarsenedFineBox = coarsen (a dbl [it ()], a nRefine);

coarsenedFineBox .surroundingNodes (faceDir);
coarsenedFineBox .shiftHalf (faceDir , 1);
ivs −= coarsenedFineBox ;
if (¬m domainCoarse .isPeriodic () ∧ ¬periodicTestBox .contains (coarsenedFineBox) ∧

¬periodicTestBox .contains (fineBoxes .get (it2 ()))) {
IntVect shiftMult (m domainCoarse .domainBox ().size ());

for (shiftIt2 .begin (); shiftIt2 .ok (); ++shiftIt2) {
IntVect shiftVect = shiftMult ∗ shiftIt2 ();

coarsenedFineBox .shift (shiftVect);
ivs −= coarsenedFineBox ;
coarsenedFineBox .shift (−shiftVect);
}

40

}
}
}
}

This code is cited in chunks 31 and 36.

This code is used in chunk 31.

¶ This last case corresponds to the situation when a fine register box sticks out of the computational domain,
but is not in the domain’s periodic direction either. Such a box is obviously a fine/coarse boundary box and so,
all its points go into ivs and nothing gets subtracted.

〈Fine Register Box Outside 34 〉 ≡34

Box fineFaceBox = fineBoxes .get (it2 ());

fineFaceBox .surroundingNodes (faceDir);
fineFaceBox .shiftHalf (faceDir , 1);
ivs .define (fineFaceBox);

This code is cited in chunks 31 and 36.

This code is used in chunk 31.

¶ Now, let us go back to module 〈 Iterate over Directions and Sides 30 〉.
After we had finished with 〈 Iterate over the Fine Register Boxes 31 〉, we picked up the slice of refluxLocations

for this face direction and for this side, this being a LayoutData of Vector〈Vector〈IntVectSet〉〉, and
defined it over the coarse level box layout, a dblCoarse . Having done so we named it locally ivsetsVect .

We had done similarly with the corresponding slice of the conversion map coarToCoarMap , this being a
LayoutData of Vector〈DataIndex〉, and defined it over the coarse level box layout, as well. Having done so
we named it locally mapsV .

In summary we’ll see the following two references in the code below:

ivsetsVect , which is a local reference to refluxLocations , and

mapsV , which is a local reference to coarToCoarMap .

The for loop that unfolds now is over all boxes of the coarse level box layout. Within this loop we will locate
coarse grid boxes for which we will need to do the refluxing, i.e., the fine/coarse border boxes on the coarse grid
side. The border boxes will be collected on the coarseBoxes layout, which will then be used to define the coarse
register and the Copiers.

Since we are at it, a word of explanation about what a Copier does and how it is defined. a Copier

predefines data movement patterns between two box layouts, in this case, the fine register box layout,
fineBoxes , and the coarse register box layout, coarseBoxes . On this occasion additional specifications
pertaining to the intended copy operation may be provided, for example, whether exchange should be
invoked after the copy operation, or whether ghost cells of the destination box layout should be filled, or
whether the copy operation should be restricted to the valid ProblemDomain only, or whether the data
should be taken from the source level ghost cells.

Once defined, a Copier is passed to the LevelData ::copyTo method as an argument to speed up the
operation. Otherwise copyTo would have to redo, what the Copier does, every time it is invoked.

Here, when defining the array of crseCopiers , which is indexed by this face direction and this side, we

provide source (fineBoxes) and target (coarseBoxes) box layouts, and tell the Copier to ignore ghost data

by making the third argument IntVect ::Zero .

But let us get back to the loop.
Within the for loop that runs over all boxes of the coarse level box layout we pick up the coarse box and

then loop over all boxes of the fine register, which is what it () points to, as has been defined above in module
〈 Iterate over the Fine Register Boxes 31 〉.

Now, if the fine register box pointed to by it () and the coarse level box pointed to by dit () intersect, we
execute 〈The Coarse Box Intersects with the Fine Box 36 〉 module, otherwise, if the domain is periodic, but the

41

periodicTestBox contains neither the fine register box, nor the coarse level box, we execute the 〈Both Boxes
Dangle Beyong the Edge 37 〉 module, since this situation requires some box shifting and taking periodic
boundaries into account.

Before we get to the loop over the fine register boxes though we check if the coarse register box we point to
currently lives on the same processor on which we do these computations. In a parallel setting boxes of a
disjoint box layout live on different processors and each processor looks after its own. So, only if this is our box,
we size the Vector of refluxLocations (here called ivsetsVect) to be SpaceDim long.

〈 Iterate over the Coarse Grid Boxes 35 〉 ≡35

DisjointBoxLayout coarseBoxes ;
LayoutIterator dit = a dblCoarse .layoutIterator ();

for (dit .begin (); dit .ok (); ++dit) {
unsigned int thisproc = a dblCoarse .procID (dit ());

if (thisproc ≡ procID ()) {
ivsetsVect [DataIndex(dit ())].resize (SpaceDim);
}

const Box &coarseBox = a dblCoarse [dit ()];

i = 0;

int count = 0;

for (it .begin (); it .ok (); ++it , ++i) {
Box regBox = fineBoxes .get (it ());

if (regBox .intersectsNotEmpty (coarseBox)) {
〈The Coarse Box Intersects with the Fine Box 36 〉
}
else if (m domainCoarse .isPeriodic () ∧ ¬periodicTestBox .contains (regBox) ∧

¬periodicTestBox .contains (coarseBox)) {
〈Both Boxes Dangle Beyong the Edge 37 〉
}
}
}
coarseBoxes .close ();
fabCoarse [index (idir , side ())].define (coarseBoxes , a nComp);
crseCopiers [index (idir , side ())].define (fineBoxes , coarseBoxes , IntVect ::Zero);

This code is cited in chunks 30 and 36.

This code is used in chunk 30.

¶ Here we have a straightforward situation: the fine register box and the coarse grid box intersect.
The fine register box is represented here by regBox , as has been defined in module 〈 Iterate over the Coarse

Grid Boxes 35 〉. The operation &= modifies regBox by intersection with coarseBox , so, from now on regBox

contains cells that are common to the original fine register box and to the coarse level box.
We find the processor that this coarse level box lives on and add the modified regBox to the coarseBoxes

layout, originally empty when created, assigning it to the same processor.
If the coarse level box processor happens to be the one we are currently on, we have to do more work.
The box layout operation addBox adds a box to the layout as a side effect. Its return is a DataIndex, as

would have been returned by the corresponding DataIterator for this box layout. And this is rather
convenient, because we can now push this DataIndex on mapsV , which, as we have pointed out in 〈 Iterate
over the Coarse Grid Boxes 35 〉, is our local name for the slot of coarToCoarMap that corresponds to this face
direction and this side.

The following for loop, over the face directions that are different from idir trims the content of
refluxLocations for this direction and side by intersecting it with regBox that has been stretched in the faceDir

direction to add the surroundingNodes . The manipulations that regBox is subjected to here are easy to
understand, but we need to explain the two operations on the refluxLocations in more detail.

42

The first thing we do is to push the points that we have collected on this slot of coarseFineIVSVect

(numbered by faceDir and i, where i is the number of the fine register box) in module 〈 Iterate over the Fine
Register Boxes 31 〉. There, to remind the reader, we have collected boundary cells—for this face direction and
this side—on the coarseFineIVSVect ’s local alias ivs , see modules 〈Fine Register Box in the Coarsened
Domain’s Box 32 〉, 〈Fine Register Box in the Periodically Extended Domain 33 〉, and 〈Fine Register Box
Outside 34 〉. So, this is how the refluxLocations gets filled with cells. But we still need to trim them by
intersecting with appropriately stretched regBox .

Let us observe that whereas i numbers the fine register boxes, count counts the number of intersections with
the fine register boxes for the coarse level box pointed to by dit ()—beginning with 1. Everything that has been
accumulated in coarseFineIVSVect from a given fine register box i goes into
ivsetsVect [DataIndex(dit ())][faceDir] including cells that do not overlap with the coarse level box dit (). For
the count intersection though, we want only those cells that belong both to the coarse level box dit () and to the
fine register box it (). The corresponding slot in ivsetsVect is [faceDir][count − 1], and so we take the content of
this slot, call it reducedIVS , and intersect with appropriately stretched regBox to eliminate the unwanted cells.

〈The Coarse Box Intersects with the Fine Box 36 〉 ≡36

regBox &= coarseBox ;
++count ;

unsigned int proc = a dblCoarse .procID (dit ());
DataIndex index = coarseBoxes .addBox (regBox , proc);

if (proc ≡ procID ()) {
mapsV [DataIndex(dit ())].push back (index);
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

if (faceDir 6= idir) {
ivsetsVect [DataIndex(dit ())][faceDir].push back (coarseFineIVSVect [faceDir][i]);

IntVectSet ∗reducedIVS = &(ivsetsVect [DataIndex(dit ())][faceDir][count − 1]);
Box faceRegBox = regBox ;

faceRegBox .surroundingNodes (faceDir);
faceRegBox .shiftHalf (faceDir , 1);
(∗reducedIVS) &= faceRegBox ;
}
}
}

This code is cited in chunks 35 and 37.

This code is used in chunk 35.

¶ Here we have the situation when both the fine register box and the coarse grid box dangle beyond the edge
of the computational domain’s box and the domain is periodic, which means that the boxes in question may be
within the domain after all—to remind the reader, a periodic domain is infinite in the direction of its periodicity.

If this is the case, we shift the regBox , i.e., the fine register box pointed to by it (), into the domain’s box
and then proceed exactly as we have in 〈The Coarse Box Intersects with the Fine Box 36 〉 module.

Having done so we shift the regBox back to where it was and then shift it in another periodic direction, and
so on, until we have run through all periodic directions of the domain.

〈Both Boxes Dangle Beyong the Edge 37 〉 ≡37

IntVect shiftMult (m domainCoarse .domainBox ().size ());

for (shiftIt .begin (); shiftIt .ok (); ++shiftIt) {
IntVect shiftVect = shiftMult ∗ shiftIt ();

regBox .shift (shiftVect);
if (regBox .intersectsNotEmpty (coarseBox)) {

regBox &= coarseBox ;
++count ;

unsigned int proc = a dblCoarse .procID (dit ());
DataIndex index = coarseBoxes .addBox (regBox , proc);

43

if (proc ≡ procID ()) {
mapsV [DataIndex(dit ())].push back (index);
for (int faceDir = 0; faceDir < SpaceDim ; faceDir ++) {

if (faceDir 6= idir) {
ivsetsVect [DataIndex(dit ())][faceDir].push back (coarseFineIVSVect [faceDir][i]);

IntVectSet ∗reducedIVS = &(ivsetsVect [DataIndex(dit ())][faceDir][count − 1]);
Box faceRegBox = regBox ;

faceRegBox .surroundingNodes (faceDir);
faceRegBox .shiftHalf (faceDir , 1);
(∗reducedIVS) &= faceRegBox ;
}
}
}
}
regBox .shift (−shiftVect);
}

This code is cited in chunk 35.

This code is used in chunk 35.

44

8.2 Wrappers

And this is all there is to define , apart from wrappers, i.e., explicit class object construction calls that, in turn,
call define to do the job. These are simple enough, so that we don’t have to comment on them. define itself
may be called with a Box instead of ProblemDomain, in which case, the Box is converted to a
ProblemDomain and define called with its primary interface.

〈Wrappers 38 〉 ≡38

LevelFluxRegisterEdge ::LevelFluxRegisterEdge(const DisjointBoxLayout &a dblFine , const

DisjointBoxLayout &a dblCoar , const Box &a dProblem , int a nRefine , int a nComp)
{

setDefaultValues ();

ProblemDomain physdomain (a dProblem);

define (a dblFine , a dblCoar , physdomain , a nRefine , a nComp);
}

LevelFluxRegisterEdge ::LevelFluxRegisterEdge(const DisjointBoxLayout &a dblFine , const

DisjointBoxLayout &a dblCoar , const ProblemDomain &a dProblem , int a nRefine , int

a nComp)
{

setDefaultValues ();
define (a dblFine , a dblCoar , a dProblem , a nRefine , a nComp);
}

void LevelFluxRegisterEdge ::define (const DisjointBoxLayout &a dbl , const DisjointBoxLayout

&a dblCoarse , const Box &a dProblem , int a nRefine , int a nComp)
{

ProblemDomain physdomain (a dProblem);

define (a dbl , a dblCoarse , physdomain , a nRefine , a nComp);
}

LevelFluxRegisterEdge ::LevelFluxRegisterEdge()
{

setDefaultValues ();
}

LevelFluxRegisterEdge ::∼LevelFluxRegisterEdge()
{ }

This code is used in chunk 39.

45

9 Putting it all together

Here we put it all together to provide instructions to tangle about how to generate the code.

#include "LevelFluxRegisterEdge.H"39

#include "LayoutIterator.H"

#include "DebugOut.H"

#include "Copier.H"

#include "parstream.H"

〈Auxiliaries 26 〉
〈Wrappers 38 〉
〈define 29 〉
〈 setToZero 11 〉
〈 incrementCoarse 12 〉
〈 incrementFine 17 〉
〈 refluxCurl 4 〉
〈Debugging Utilities 27 〉

46

10 The Header File

For completeness we add the class header file, so that it can be regenerated by tangle together with the cpp file.

〈 Reflux.H 40 〉 ≡40

#ifndef _LEVELFLUXREGISTEREDGE_H_

define _LEVELFLUXREGISTEREDGE_H_

#include "REAL.H"

#include "Vector.H"

#include "FluxBox.H"

#include "IntVectSet.H"

#include "CFStencil.H"

#include "LoHiSide.H"

#include "LevelData.H"

#include "LayoutData.H"

class LevelFluxRegisterEdge {
public:

LevelFluxRegisterEdge();
LevelFluxRegisterEdge(const DisjointBoxLayout &a dbl , const DisjointBoxLayout

&a dblCoarse , const Box &a dProblem , int a nRefine , int a nComp);
LevelFluxRegisterEdge(const DisjointBoxLayout &a dbl , const DisjointBoxLayout

&a dblCoarse , const ProblemDomain &a dProblem , int a nRefine , int a nComp);
∼LevelFluxRegisterEdge();

void define (const DisjointBoxLayout &a dbl , const DisjointBoxLayout &a dblCoarse , const Box

&a dProblem , int a nRefine , int a nComp);
void define (const DisjointBoxLayout &a dbl , const DisjointBoxLayout &a dblCoarse , const

ProblemDomain &a dProblem , int a nRefine , int a nComp);
void undefine ();
void setToZero();
void incrementCoarse (FArrayBox &a coarseFlux ,Real a scale , const DataIndex

&a coarseDataIndex , const Interval &a srcInterval , const Interval &a dstInterval , int a dir);
void incrementFine (FArrayBox &a fineFlux ,Real a scale , const DataIndex &a fineDataIndex , const

Interval &a srcInterval , const Interval &a dstInterval , int a dir ,Side ::LoHiSidea sd);
void refluxCurl (LevelData〈FluxBox〉 &a uCoarse ,Real a scale);
bool isDefined () const;
void dump();
void dumpLoCoar (int idir);
void dumpHiCoar (int idir);
void dumpLoFine (int idir);
void dumpHiFine (int idir);

protected:

static int index (int dir ,Side ::LoHiSide side);
static int getRegComp(const int &faceDir , const int &edgeDir);
void setDefaultValues ();
LevelData〈FluxBox〉 fabCoarse [SpaceDim ∗ 2];
LevelData〈FluxBox〉 fabFine [SpaceDim ∗ 2];
Vector〈Copier〉 crseCopiers ;
LayoutData〈Vector〈Vector〈IntVectSet〉〉〉 refluxLocations [SpaceDim ∗ 2];
LayoutData〈Vector〈DataIndex〉〉 coarToCoarMap [SpaceDim ∗ 2];
bool m isDefined ;
int m nComp ;
int m nRefine ;
ProblemDomain m domainCoarse ;

private:

void operator=(const LevelFluxRegisterEdge &);

47

LevelFluxRegisterEdge(const LevelFluxRegisterEdge &);
};

#endif

48

11 Closing Comments

The class LevelFluxRegisterEdge was designed some 5 or 6 years ago, and hasn’t been updated since,
whereas its simpler sibling, LevelFluxRegister, has been revised and optimised in many ways, this being a
central class of the AMR method when applied to Computational Fluid Dynamics. This accounts for various
minor glitches, dutifully flagged with the “dangerous bend” signs on the margins of this document, as well as
possible inefficiencies.

The location and initialization of fine/coarse boundary structures, as discussed in section 8, is a costly
endeavour and so it should not be repeated while the grids don’t change. In case a program does not evolve the
levels at all, it should be done right at the beginning of the execution and then only the refluxCurl invoked.

There are two factors here that make the code hard to read.
The first one, as we have remarked above, is its coverage of periodic boundaries. The second one is the need

to account for face mounted nodes, hence various “hacks” such as stretching the boxes and half-shifts.
This second problem suggests that Chombo itself should provide more and better facilities to support data

mounts other than at cell centers, so that the “hacks” deployed in this and in the “Prolongate” codes would not
be needed. The first problem could be addressed by simply chopping out all parts of the code that address
periodic boundaries. These changes would make the code much simpler and thus easier to manage, debug and
optimize.

Does it all really work without a glitch? The code has been thoroughly tested and then used in MHD
simulations, so, yes, it does work.

But if additional tests are needed, the debugging utilities provided as place-holders currently, should be �
enhanced and made to print register contents—both cell locations and data accumulated within the cells.

This should be done both for direct printing and for HDF5 output.

49

References

[1] Dinshaw S. Balsara, “Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics”, Journal of
Computational Physics, vol. 174, pp. 614–648, 2001.

[2] Zdzis law Meglicki, Stephen K. Gray and Boyana Norris, “Multigrid FDTD with Chombo”, Computer
Physics Communications, Available online 13 October 2006, doi:10.1016/j.cpc.2006.08.008

50

Index

Here is a list of the identifiers used, and the chunks where they appear. Underlined entries indicate the place of
definition.

_LEVELFLUXREGISTEREDGE_H_: 40.
a coarseDataIndex : 12, 15, 40.
a coarseFlux : 12, 13, 14, 15, 16, 40.
a dbl : 29, 30, 32, 33, 38, 40.
a dblCoar : 38.
a dblCoarse : 29, 30, 35, 36, 37, 38, 40.
a dblFine : 38.
a dir : 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 40.
a dProblem : 29, 38, 40.
a dstInterval : 12, 13, 15, 17, 18, 23, 40.
a fineDataIndex : 17, 21, 40.
a fineFlux : 17, 18, 20, 21, 23, 24, 40.
a idir : 27.
a nComp : 29, 30, 35, 38, 40.
a nRefine : 29, 32, 33, 38, 40.
a scale : 4, 6, 7, 9, 12, 15, 16, 17, 19, 23, 25, 40.
a sd : 17, 18, 21, 23, 24, 40.
a srcInterval : 12, 13, 15, 17, 18, 23, 40.
a uCoarse : 4, 6, 8, 40.
addBox : 36, 37.
adjCellHi : 30.
adjCellLo : 30.
assert : 4, 7, 13, 14, 18, 20, 26, 29, 33.
b: 6.
BaseFab: 9.
begin : 4, 9, 11, 13, 15, 18, 23, 30, 31, 32, 33, 35, 37.
bogus : 19.
box : 6, 13, 14, 16, 18, 20, 22, 23.
Box: 2, 6, 14, 20, 22, 23, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 40.
BoxIterator: 22, 23.
BoxLayout: 4, 5, 6.
CELL: 12, 14, 16, 20, 22, 23.
CH_SPACEDIM: 19.
checkPeriodic : 29.
close : 35.
coar : 4, 9, 25.
coarReg : 5, 6, 9, 11.
coarse register : 7.
coarseBox : 35, 36, 37.
coarseBoxes : 35, 36, 37.
coarseFineIVSVect : 30, 31, 32, 36, 37.
coarseGridBox : 6.
coarseIndex : 23, 25.
coarsen : 29, 30, 32, 33.
coarsenedFineBox : 32, 33.
coarToCoarMap : 2, 6, 8, 15, 28, 29, 30, 35, 36, 40.
comp : 4, 9, 16.
compDomBox : 31, 33.
contains : 9, 31, 32, 33, 35.

Copier: 5, 35, 40.
copyTo : 5, 35.
count : 35, 36, 37.
cout : 27.
crseCopiers : 5, 28, 29, 35, 40.
curlReflux : 16.
D_DECL: 23.
DataIndex: 2, 8, 12, 15, 17, 30, 35, 36, 37, 40.
DataIterator: 4, 5, 11, 36.
dataIterator : 4, 11.
DataLayout : 17.
DEBUG: 7, 13, 14, 20.
define : 2, 4, 5, 9, 28, 29, 30, 32, 33, 34, 35, 38, 40.
denom : 19.
dest : 23, 25.
dir : 26, 40.
DisjointBoxLayout: 29, 30, 35, 38, 40.
dit : 11, 35, 36, 37.
domainBox : 22, 29, 31, 32, 33, 37.
dump : 27, 40.
dumpHiCoar : 27, 40.
dumpHiFine : 27, 40.
dumpLDF : 27.
dumpLoCoar : 27, 40.
dumpLoFine : 27, 40.
edgeDir : 26, 40.
end : 13, 18, 23.
endl : 27.
exchange : 35.
fabCoarse : 4, 5, 11, 15, 16, 27, 28, 35, 40.
fabFine : 4, 5, 11, 21, 27, 28, 30, 40.
faceDir : 26, 30, 31, 32, 33, 34, 36, 37, 40.
faceRegBox : 36, 37.
false : 26.
FArrayBox : 2, 6, 9, 12, 15, 17, 21, 40.
fine : 4, 9, 25.
fine register : 7.
fineBoxes : 30, 31, 32, 33, 34, 35.
fineFaceBox : 32, 33, 34.
fineReg : 5, 11.
fineRegLocal : 5, 6, 9, 28.
FluxBox: 2, 4, 5, 6, 9, 11, 15, 21, 27, 40.
fluxComp : 4, 6, 7, 8, 9, 14, 15, 16, 20, 21, 23.
fluxIt : 23.
get : 31, 32, 33, 34, 35.
getBoxes : 5.
getRegComp : 7, 15, 21, 26, 40.
grow : 22, 29.
growHi : 23.
growLo : 23.

51

Hi : 4, 6, 15, 16, 18, 22, 27.
hiFabCoar : 27.
hiFabFine : 27.
i: 9, 15, 31.
idir : 4, 5, 6, 7, 8, 11, 16, 27, 29, 30, 31, 35,

36, 37, 40.
incrementCoarse : 2, 3, 7, 10, 12, 14, 16, 17,

20, 21, 22, 25, 40.
incrementFine : 2, 3, 7, 10, 17, 20, 21, 23, 25, 40, 41.
index : 5, 6, 8, 11, 15, 16, 21, 26, 27, 30, 35,

36, 37, 40.
IndexType : 14, 20.
indexV : 8, 9.
intersectsNotEmpty : 35, 37.
interval : 5.
Interval: 12, 17, 40.
IntVect: 6, 23, 32, 33, 35, 37.
IntVectSet: 2, 6, 8, 30, 31, 35, 36, 37, 40.
isDefined : 4, 13, 18, 26, 40.
isEmpty : 13, 18, 29, 33.
isPeriodic : 29, 32, 33, 35.
it : 4, 6, 8, 12, 17, 31, 32, 33, 35, 36, 37.
it2 : 31, 32, 33, 34.
iv : 4, 9.
ivs : 31, 32, 33, 34, 36.
ivsetsVect : 30, 35, 36, 37.
IVSIterator: 9.
ivsV : 8, 9.
LayoutData : 2, 8, 30, 35, 40.
layoutIterator : 31, 35.
LayoutIterator: 5, 31, 35.
LevelData: 2, 4, 5, 11, 12, 15, 27, 35, 40.
LevelFluxRegister: 1, 2, 41.
LevelFluxRegisterEdge: 1, 2, 3, 4, 5, 7, 10, 11,

12, 13, 17, 26, 27, 29, 38, 40, 41.
Lo : 4, 6, 15, 16, 18, 23, 27, 30.
local scale : 4, 7, 9, 16, 25.
loFabCoar : 27.
loFabFine : 27.
LoHiSide : 17, 26, 40.
m coarseLocations : 2.
m domainCoarse : 22, 28, 29, 31, 32, 33, 35, 37, 40.
m isDefined : 26, 29, 40.
m nComp : 4, 5, 9, 13, 18, 26, 28, 29, 40.
m nRefine : 19, 23, 26, 28, 29, 30, 40.
mapsV : 30, 35, 36, 37.
nComp : 4, 13, 18.
newbox : 30.
NODE: 12, 14, 16, 20, 22, 23.
nonUpdatedEdges : 6, 9.
ok : 4, 9, 11, 15, 23, 30, 31, 32, 33, 35, 37.
periodicTestBox : 29, 32, 33, 35.
physdomain : 38.
PiecewiseLinearFillPatchFace: 22, 32.
plus : 15.

ProblemDomain: 29, 30, 35, 38, 40.
proc : 36, 37.
procID : 35, 36, 37.
push back : 36, 37.
Real: 4, 7, 12, 17, 19, 40.
reducedIVS : 36, 37.
refine : 23.
refineVect : 23.
refluxCurl : 3, 4, 9, 12, 15, 16, 25, 28, 40, 41.
refluxLocations : 2, 6, 8, 9, 28, 29, 30, 35, 36, 40.
reg : 15, 21, 22, 23, 25.
regBox : 33, 35, 36, 37.
regComp : 15, 16.
regcomp : 21, 22, 23, 26.
regDir : 15.
registerIndex : 15.
registers : 15.
regIt : 22, 23.
resize : 29, 30, 35.
scale : 19, 23, 25.
setDefaultValues : 26, 38, 40.
setToZero : 11, 40.
setVal : 11.
shift : 32, 33, 37.
shiftedValidDomain : 22.
shiftHalf : 6, 15, 21, 23, 24, 32, 33, 34, 36, 37.
shiftIt : 29, 32, 33, 37.
ShiftIterator: 29, 33.
shiftIterator : 29, 33.
shiftIt2 : 33.
shiftMult : 32, 33, 37.
shiftVect : 32, 33, 37.
Side: 2, 17, 18, 23, 26, 27, 30, 40.
side : 4, 5, 6, 7, 8, 11, 15, 26, 30, 31, 35, 40.
sideDir : 14, 20.
SideIterator: 2, 4, 11, 15, 30.
sign : 7, 15, 21, 24.
size : 9, 13, 15, 18, 30, 32, 33, 37.
SpaceDim : 2, 4, 5, 6, 7, 8, 11, 13, 14, 18, 20, 26,

27, 29, 30, 31, 35, 36, 37, 40.
spacedim : 19.
src : 23.
surroundingNodes : 22, 32, 33, 34, 36, 37.
testDir : 7.
thisBox : 14, 20.
thisproc : 35.
thisReg : 21.
tmp : 30.
true : 29.
type : 14, 20.
U : 6.
undefine : 26, 40.
Unit : 6.
Vector: 2, 8, 15, 30, 35, 40.
Zero : 6, 35.

52

List of Refinements

〈Apply the correction 6, 7, 8, 9 〉 Cited in chunks 4, 6, and 9. Used in chunk 4.

〈Auxiliaries 26 〉 Used in chunk 39.

〈Body of incrementFine 18, 19, 20, 21, 22, 23, 24 〉 Used in chunk 17.

〈Body of incrementCoarse 13, 14, 15 〉 Used in chunk 12.

〈Both Boxes Dangle Beyong the Edge 37 〉 Cited in chunk 35. Used in chunk 35.

〈Debugging Utilities 27 〉 Used in chunk 39.

〈Fine Register Box Outside 34 〉 Cited in chunks 31 and 36. Used in chunk 31.

〈Fine Register Box in the Coarsened Domain’s Box 32 〉 Cited in chunks 31, 32, 33, and 36. Used in chunk 31.

〈Fine Register Box in the Periodically Extended Domain 33 〉 Cited in chunks 31 and 36. Used in chunk 31.

〈 Iterate over Directions and Sides 30 〉 Cited in chunks 5, 29, and 35. Used in chunk 29.

〈 Iterate over the Coarse Grid Boxes 35 〉 Cited in chunks 30 and 36. Used in chunk 30.

〈 Iterate over the Fine Register Boxes 31 〉 Cited in chunks 30, 35, and 36. Used in chunk 30.

〈Make a coarse copy of the fine register 5 〉 Cited in chunk 4. Used in chunk 4.

〈 Reflux.H 40 〉
〈The Coarse Box Intersects with the Fine Box 36 〉 Cited in chunks 35 and 37. Used in chunk 35.

〈Wrappers 38 〉 Used in chunk 39.

〈define 29 〉 Cited in chunk 32. Used in chunk 39.

〈 incrementCoarse 12 〉 Used in chunk 39.

〈 incrementFine 17 〉 Used in chunk 39.

〈 refluxCurl 4 〉 Used in chunk 39.

〈 setToZero 11 〉 Used in chunk 39.

53

